Consider a 1D particle in a box confined between z = 0 and z = 3. The Hamiltonian for the particle inside the box is simply given by Ĥ *4 Consider the following normalized wavefunction 2m dr²° ¥(x) = / (x³ – 9x). Find the expectation value for the energy of the particle inside the box. Give your 35 3832 final answer for the expectation value in units of (NOTE: h, not hbar!). In your work, compare the expectation value to the lowest energy state of the 1D particle in a box and comment on how the expectation value you calculated for the wavefunction ¥(x) is an example of the variational principle.

Principles of Modern Chemistry
8th Edition
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Chapter4: Introduction To Quantum Mechanics
Section: Chapter Questions
Problem 42P
icon
Related questions
icon
Concept explainers
Question
Consider a 1D particle in a box confined between a = 0 and x = 3. The Hamiltonian for the particle inside the
box is simply given by Ĥ
. Consider the following normalized wavefunction
2m dz²
¥(2) =
35
(x³ – 9x). Find the expectation value for the energy of the particle inside the box. Give your
5832
final answer for the expectation value in units of (NOTE: h, not hbar!). In your work, compare the expectation
value to the lowest energy state of the 1D particle in a box and comment on how the expectation value you
calculated for the wavefunction ¥(x) is an example of the variational principle.
Transcribed Image Text:Consider a 1D particle in a box confined between a = 0 and x = 3. The Hamiltonian for the particle inside the box is simply given by Ĥ . Consider the following normalized wavefunction 2m dz² ¥(2) = 35 (x³ – 9x). Find the expectation value for the energy of the particle inside the box. Give your 5832 final answer for the expectation value in units of (NOTE: h, not hbar!). In your work, compare the expectation value to the lowest energy state of the 1D particle in a box and comment on how the expectation value you calculated for the wavefunction ¥(x) is an example of the variational principle.
Expert Solution
Step 1

Chemistry homework question answer, step 1, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Introduction and Principles of Quantum Theory
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning