Bartleby Sitemap - Textbook Solutions

All Textbook Solutions for Steel Design (Activate Learning with these NEW titles from Engineering!)

9.4.4P9.4.5P9.5.1P9.5.2P9.5.3PNote For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-1 Compute the following deflections for the beam in Problem 9.2-1. a. Maximum deflection before the concrete has cured. b. Maximum total deflection after composite behavior has been attained.Note For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-2 Compute the following deflections for the beam in Problem 9.2-2. a. Maximum deflection before the concrete has cured. b. Maximum total deflection after composite behavior has been attained.Note For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-3 For the beam of Problem 9.3-1, a. Compute the deflections that occur before and after the concrete has cured. b. If the live-load deflection exceeds L360 , select another steel shape using either LRFD or ASD.Note For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-4 For the beam of Problem 9.4-1, a. Compute the deflections that occur before and after the concrete has cured. b. If the total deflection after the concrete has cured exceeds L240 select another steel shape using either LRFD or ASD.Note For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-5 For the beam of Problem 9.4-2. a. Compute the deflections that occur before and after the concrete has cured. b. It the live toad deflection exceeds L360 , select another steel shape using either LRFD or ASD.9.7.1P9.7.2P9.7.3P9.7.4P9.8.1P9.8.2PA beam must be designed to the following specifications: Span length = 35 ft Beam spacing = 10 ft 2-in. deck with 3 in. of lightweight concrete fill (wc=115 pcf) for a total depth of t=5 in. Total weight of deck and slab = 51 psf Construction load = 20 psf Partition load = 20 psf Miscellaneous dead load = 10 psf Live load = 80 psf Fy=50 ksi, fc=4 ksi Assume continuous lateral support and use LRFD. a. Design a noncomposite beam. Compute the total deflection (there is no limit to be checked). b. Design a composite beam and specify the size and number of stud anchors required. Assume one stud at each beam location. Compute the maximum total deflection as follows: 1. Use the transformed section. 2. Use the lower-bound moment of inertia.9.8.4P9.8.5P9.8.6P9.8.7P9.8.8PUse the composite beam tables and select a W-shape and stud anchors for the following conditions: Span length = 18 6 Beam spacing = 9 ft Total slab thickness = 51 2 in. (the slab and deck combination weighs 57 psf). Lightweight concrete with a unit weight of 115 pcf is used Construction load = 20 psf Partition load = 20 psf Live load = 225 psf Fy=50 ksi and fc=4 ksi A cross section of the formed steel deck is shown in Figure P9.8-9. The maximum live-load deflection cannot exceed L/360 (use a lower-bound moment of inertia). a. Use LRFD. b. User ASD.9.8.10P9.10.1P9.10.2P10.4.1P10.4.2P10.4.3P10.4.4P10.4.5P10.5.1P10.5.2P10.5.3P10.5.4P10.6.1P10.6.2P10.7.1P10.7.2P10.7.3PA plate girder must be designed for the conditions shown in Figure P10.7-4. The given loads are factored, and the uniformly distributed load includes a conservative estimate of the girder weight. Lateral support is provided at the ands and at the load points. Use LRFD for that following: a. Select the, flange and web dimensions so that intermediate stiffeners will he required. Use Fy=50 ksi and a total depth of 50 inches. Bearing stiffeners will be used at the ends and at the load points, but do not proportion them. b. Determine the locations of the intermediate stiffeners, but do not proportion them.10.7.5P10.7.6P10.7.7P10.7.8P10.7.9P
Page: [1][2]