ORG.CHEMISTRY W/ACCESS+MODEL KIT PKG
ORG.CHEMISTRY W/ACCESS+MODEL KIT PKG
5th Edition
ISBN: 9781260701128
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.2P

How many degrees of unsaturation are present in each compound?

a. C 6 H 6

b. C 8 H 18

c. C 7 H 8 O

d. C 7 H 11 Br

e. C 5 H 9 N

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation: The number of degree of unsaturation for the given molecular formula is to be calculated.

Concept introduction: The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Answer to Problem 10.2P

The number of degree of unsaturation for C6H6 is 4.

Explanation of Solution

The given molecular formula is C6H6.

The number of carbon and hydrogen atoms present in C6H6 are six and six.

The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Substitute the value of n and x in the given formula.

DU=(2n+2)x2=(2(6)+2)62=1462=4

Therefore, the number of degree of unsaturation for C6H6 is 4.

Conclusion

The number of degree of unsaturation for C6H6 is 3.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation: The number of degree of unsaturation for the given molecular formula is to be calculated.

Concept introduction: The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Answer to Problem 10.2P

The number of degree of unsaturation for C8H18 is 0.

Explanation of Solution

The given molecular formula is C8H18.

The number of carbon and hydrogen atoms present in C8H18 are 8 and 18.

The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Substitute the value of n and x in the given formula.

DU=(2n+2)x2=(2(8)+2)182=18182=0

Therefore, the number of degree of unsaturation for C8H18 is 0.

Conclusion

The number of degree of unsaturation for C8H18 is 0.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation: The number of degree of unsaturation for the given molecular formula is to be calculated.

Concept introduction: The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Answer to Problem 10.2P

The number of degree of unsaturation for C7H8O is 4.

Explanation of Solution

The given molecular formula is C7H8O.

The number of carbon and hydrogen atoms present in C7H8O are 7 and 8.

The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Substitute the value of n and x in the given formula.

DU=(2n+2)x2=(2(7)+2)82=1682=4

Therefore, the number of degree of unsaturation for C7H8O is 4.

Conclusion

The number of degree of unsaturation for C7H8O is 4.

Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation: The number of degree of unsaturation for the given molecular formula is to be calculated.

Concept introduction: The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Answer to Problem 10.2P

The number of degree of unsaturation for C7H11Br is 2.

Explanation of Solution

The given molecular formula is C7H11Br.

The number of carbon and hydrogen atoms present in C7H11Br are 7 and 11.

If halogen atom is present in molecular formula than replace halogen and add hydrogen. Therefore, the molecular formula becomes C7H12.

The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Substitute the value of n and x in the given formula.

DU=(2n+2)x2=(2(7)+2)122=16122=2

Therefore, the number of degree of unsaturation for C7H11Br is 2.

Conclusion

The number of degree of unsaturation for C7H11Br is 2.

Expert Solution
Check Mark
Interpretation Introduction

(e)

Interpretation: The number of degree of unsaturation for given molecular formula is to be calculated.

Concept introduction: The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Answer to Problem 10.2P

The number of degree of unsaturation for C5H9N is 2.

Explanation of Solution

The given molecular formula is C5H9N.

The number of carbon and hydrogen atoms present in C5H9N are 5 and 9. If nitrogen atom is present in molecular formula than replace nitrogen and remove hydrogen for each nitrogen atom. Therefore, the molecular formula becomes C7H8.

The formula to calculate the number of degree of unsaturation is,

DU=(2n+2)x2

Where,

n is the number of carbon atom given in molecular formula.

x is the number of hydrogen atom given in molecular formula.

Substitute the value of n and x in the given formula.

DU=(2n+2)x2=(2(5)+2)22=1282=2

Therefore, the number of degree of unsaturation for C5H9N is 2.

Conclusion

The number of degree of unsaturation for C5H9N is 2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
How many degrees of unsaturation are present in each compound? a.C6H6 b.C8H18 c.C7H8O d.C7H11Br e.C5H9N
Rank the following groups in order of decreasing priority. a.−COOH, −H, −NH2, −OH b.−H, −CH3, −Cl, −CH2Cl c. −CH2CH3, −CH3, −H, −CH(CH3)2 d.−CH=CH2, −CH3, −C≡CH, −H
Select the more stable conformation of cis‑1,2‑di(2‑methylpropyl)cyclohexane. A B C D Select the more stable conformation of trans‑1,2‑di(2‑methylpropyl)cyclohexane. A B C D Select the most stable conformation overall. A B C D

Chapter 10 Solutions

ORG.CHEMISTRY W/ACCESS+MODEL KIT PKG

Ch. 10 - Linolenic acidTable 10.2 and stearidonic acid are...Ch. 10 - Prob. 10.12PCh. 10 - Problem 10.13 What product is formed when each...Ch. 10 - Prob. 10.14PCh. 10 - Problem 10.15 Draw the products formed when each...Ch. 10 - Prob. 10.16PCh. 10 - Prob. 10.17PCh. 10 - Addition of HBr to which of the following alkenes...Ch. 10 - Problem 10.19 Draw the products, including...Ch. 10 - Prob. 10.20PCh. 10 - Problem 10.21 What two alkenes give rise to each...Ch. 10 - Prob. 10.22PCh. 10 - Problem 10.23 Draw the products of each reaction,...Ch. 10 - Problem 10.24 Draw all stereoisomers formed in...Ch. 10 - Prob. 10.25PCh. 10 - Problem 10.26 What alkylborane is formed from...Ch. 10 - Draw the products formed when each alkene is...Ch. 10 - What alkene can be used to prepare each alcohol as...Ch. 10 - Prob. 10.29PCh. 10 - Draw the products of each reaction using the two...Ch. 10 - Problem 10.31 Devise a synthesis of each compound...Ch. 10 - Give the IUPAC name for each compound. a.b.Ch. 10 - a Label the carbon-carbon double bond in A as E or...Ch. 10 - Prob. 10.34PCh. 10 - 10.35 Calculate the number of degrees of...Ch. 10 - Prob. 10.36PCh. 10 - Label the alkene in each drug as E or Z....Ch. 10 - Give the IUPAC name for each compound. a. c. e. b....Ch. 10 - Prob. 10.39PCh. 10 - 10.40 (a) Draw all possible stereoisomers of, and...Ch. 10 - Prob. 10.41PCh. 10 - 10.42 Now that you have learned how to name...Ch. 10 - Prob. 10.43PCh. 10 - Prob. 10.44PCh. 10 - Prob. 10.45PCh. 10 - Draw the products formed when (CH3)2C=CH2 is...Ch. 10 - What alkene can be used to prepare each alkyl...Ch. 10 - Prob. 10.48PCh. 10 - Draw the constitutional isomer formed in each...Ch. 10 - Prob. 10.50PCh. 10 - Draw all stereoisomers formed in each reaction. a....Ch. 10 - Draw the products of each reaction, including...Ch. 10 - Prob. 10.53PCh. 10 - Prob. 10.54PCh. 10 - Prob. 10.55PCh. 10 - 10.56 Draw a stepwise mechanism for the following...Ch. 10 - Prob. 10.57PCh. 10 - Draw a stepwise mechanism for the conversion of...Ch. 10 - Draw a stepwise mechanism that shows how all three...Ch. 10 - Less stable alkenes can be isomerized to more...Ch. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - Bromoetherification, the addition of the elements...Ch. 10 - Devise a synthesis of each product from the given...Ch. 10 - 10.65 Draw a synthesis of each compound from...Ch. 10 - 10.66 Explain why A is a stable compound but B is...Ch. 10 - Prob. 10.67PCh. 10 - Prob. 10.68PCh. 10 - 10.69 Lactones, cyclic esters such as compound A,...Ch. 10 - 10.70 Draw a stepwise mechanism for the following...Ch. 10 - 10.71 Like other electrophiles, carbocations add...Ch. 10 - 10.72 Draw a stepwise mechanism for the...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License