VECTOR MECH....F/ENGNRS-STATICS -CONNECT
VECTOR MECH....F/ENGNRS-STATICS -CONNECT
12th Edition
ISBN: 9781260689495
Author: BEER
Publisher: MCG CUSTOM
bartleby

Videos

Textbook Question
Book Icon
Chapter 10.1, Problem 10.5P

A spring of constant 15 kN/m connects points C and F of the linkage shown. Neglecting the weight of the spring and linkage, determine the force in the spring and the vertical motion of point G when a vertical downward 120-N force is applied (a) at point C, (b) at points C and H.

Chapter 10.1, Problem 10.5P, A spring of constant 15 kN/m connects points C and F of the linkage shown. Neglecting the weight of

Fig. P10.5 and P10.6

(a)

Expert Solution
Check Mark
To determine

Find the force in the spring and the vertical motion of point G when a vertical load of 120N force is applied at point C.

Answer to Problem 10.5P

The force in the spring is 60N(C)_.

The vertical motion of point G is 8mm()_.

Explanation of Solution

Given information:

The spring constant is k=15kN/m.

Calculation:

Show the free-body diagram of the spring assembly as in Figure 1.

VECTOR MECH....F/ENGNRS-STATICS -CONNECT, Chapter 10.1, Problem 10.5P

Write the relation of the deflections at point G, H, F, E, D with C as follows;

yG=4yC;δyG=4δyC

yH=4yC;δyH=4δyCyF=3yC;δyF=3δyCyD=2yC;δyD=2δyCyE=2yC;δyE=2δyC

The deflection Δ of the spring is;

Δ=yFyC=3yCyC=2yC

Assume the spring force Q is in tension.

Find the force in the spring Q using the relation.

Q=+kΔ

Here, the spring constant is k.

Substitute 15kN/m for k and 2yC for Δ.

Q=15(2yC)=30yC (1)

Use the virtual work principle:

δU=0CδyC+QδyCQδyFFδyFHδyHEδyE=0

Here, E=0;F=0;H=0;C=120N

Substitute 120 N for C, 3δyC for δyF, 0 for F, 0 for H, 4δyC for δyH, 0 for E, and 2δyC for δyE.

120δyC+QδyCQ(3δyC)(0)(3δyC)(0)(4δyC)(0)(2δyC)=0120+Q3Q000=02Q=120Q=60N

Q=60N(C)

The spring force Q is in compression. The assumption is incorrect.

Therefore, the force in the spring is 60N(C)_.

Substitute –60 N for Q in Equation (1).

60=30yCyC=2mm

Find the vertical motion (yG) of point G using the relation.

yG=4yC

Substitute –2 mm for yC.

yG=4(2)=8mm=8mm()

Therefore, the vertical motion of point G is 8mm()_.

(b)

Expert Solution
Check Mark
To determine

Find the force in the spring and the vertical motion of point G when a vertical load of 120N force is applied at point C and H.

Answer to Problem 10.5P

The force in the spring is 300N(C)_.

The vertical motion of point G is 40mm()_.

Explanation of Solution

Given information:

The spring constant is k=15kN/m.

Calculation:

Use the virtual work principle:

δU=0CδyC+QδyCQδyFFδyFHδyHEδyE=0

Here, E=0;F=0;H=120N;C=120N

Substitute 120 N for C, 3δyC for δyF, 0 for F, 120 N for H, 4δyC for δyH, 0 for E, and 2δyC for δyE.

120δyC+QδyCQ(3δyC)(0)(3δyC)(120)(4δyC)(0)(2δyC)=0120+Q3Q04800=02Q=600Q=300N

Q=300N(C)

The spring force Q is in compression. The assumption is incorrect.

Therefore, the force in the spring is 300N(C)_.

Substitute –300 N for Q in Equation (1).

300=30yCyC=10mm

Find the vertical motion (yG) of point G using the relation.

yG=4yC

Substitute –10 mm for yC.

yG=4(10)=40mm=40mm()

Therefore, the vertical motion of point G is 40mm()_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 8.37 from Ferdinand Beer
Two blocks of mass m = 2.00 kg are connected by a vertical string of negligible mass and unknown tension Tm are hanging vertically. The higher one of these two masses is directly attached to another string of negligible mass and unknown tension T that goes over a frictionless pulley of negligible mass and is connected to a third block of mass M = 6.00 kg. The heavier block is free to slide on an incline (of angle 0 = 30.0° w.r.t. the horizontal) with coefficients of kinetic friction of µA = 0.120 and static friction µ,=0.150 between the block and the incline. The system is released from rest. !! M a) Please perform a test to determine which way the system would like to move in the absence of any friction. b) Please perform a test to determine whether the system will be able to overcome the maximum of static friction and be able to move, or remain at rest instead. c) Determine the magnitude of the normal force N exerted on the third block by the incline. d) Determine BOTH the magnitude…
1

Chapter 10 Solutions

VECTOR MECH....F/ENGNRS-STATICS -CONNECT

Ch. 10.1 - Prob. 10.11PCh. 10.1 - Knowing that the line of action of the force Q...Ch. 10.1 - Solve Prob. 10.12 assuming that the force P...Ch. 10.1 - The mechanism shown is acted upon by the force P....Ch. 10.1 - Prob. 10.15PCh. 10.1 - 10.15 and 10.16 Derive an expression for the...Ch. 10.1 - A uniform rod AB with length l and weight W is...Ch. 10.1 - The pin at C is attached to member BCD and can...Ch. 10.1 - For the linkage shown, determine the couple M...Ch. 10.1 - For the linkage shown, determine the force...Ch. 10.1 - A 4-kN force P is applied as shown to the piston...Ch. 10.1 - A couple M with a magnitude of 100 Nm isapplied as...Ch. 10.1 - Rod AB is attached to a block at A that can...Ch. 10.1 - Solve Prob. 10.23, assuming that the 800-N force...Ch. 10.1 - Prob. 10.25PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.27PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.29PCh. 10.1 - Two rods AC and CE are connected by a pin at Cand...Ch. 10.1 - Solve Prob. 10.30 assuming that force P is movedto...Ch. 10.1 - Two bars AD and DG are connected by a pin at Dand...Ch. 10.1 - Solve Prob. 10.32 assuming that the 900-N...Ch. 10.1 - Two 5-kg bars AB and BC are connected by a pin atB...Ch. 10.1 - A vertical force P with a magnitude of 150 N...Ch. 10.1 - Prob. 10.36PCh. 10.1 - 10.37 and 10.38 Knowing that the constant of...Ch. 10.1 - Prob. 10.38PCh. 10.1 - The lever AB is attached to the horizontal shaft...Ch. 10.1 - Solve Prob. 10.39, assuming that P = 350 N, l =250...Ch. 10.1 - Prob. 10.41PCh. 10.1 - The position of boom ABC is controlled by...Ch. 10.1 - The position of member ABC is controlled by the...Ch. 10.1 - The position of member ABC is controlled by...Ch. 10.1 - The telescoping arm ABC is used to provide...Ch. 10.1 - Solve Prob. 10.45, assuming that the workers...Ch. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Knowing that the coefficient of static...Ch. 10.1 - A block with weight W is pulled up a plane forming...Ch. 10.1 - Derive an expression for the mechanical...Ch. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Knowing that the coefficient of static...Ch. 10.1 - Using the method of virtual work,...Ch. 10.1 - Using the method of virtual work, determine...Ch. 10.1 - Referring to Prob. 10.43 and using the value...Ch. 10.1 - Prob. 10.56PCh. 10.1 - Prob. 10.57PCh. 10.1 - Prob. 10.58PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.29....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.30....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.31....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.32....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.34....Ch. 10.2 - Prob. 10.64PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.37....Ch. 10.2 - Prob. 10.66PCh. 10.2 - Prob. 10.67PCh. 10.2 - Show that equilibrium is neutral in Prob. 10.7....Ch. 10.2 - Two uniform rods, each with a mass m, areattached...Ch. 10.2 - Two uniform rods, AB and CD, are attached to gears...Ch. 10.2 - Two uniform rods AB and CD, of the same length...Ch. 10.2 - Two uniform rods, each of mass m and length l, are...Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob....Ch. 10.2 - In Prob. 10.40, determine whether each of...Ch. 10.2 - A load W of magnitude 144 lb is applied to...Ch. 10.2 - Prob. 10.76PCh. 10.2 - Prob. 10.77PCh. 10.2 - Prob. 10.78PCh. 10.2 - A slender rod AB with a weight W is attached to...Ch. 10.2 - A slender rod AB with a weight W is attached totwo...Ch. 10.2 - Prob. 10.81PCh. 10.2 - A spring AB of constant k is attached to two...Ch. 10.2 - A slender rod AB is attached to two collars A and...Ch. 10.2 - Prob. 10.84PCh. 10.2 - 10.85 and 10.86 Cart B, which weighs 75 kN, rolls...Ch. 10.2 - 10.85 and 10.86 Cart B, which weighs 75 kN, rolls...Ch. 10.2 - 10.87 and 10.88 Collar A can slide freely on the...Ch. 10.2 - 10.87 and 10.88 Collar A can slide freely on the...Ch. 10.2 - Prob. 10.89PCh. 10.2 - A vertical bar AD is attached to two springs...Ch. 10.2 - Rod AB is attached to a hinge at A and to two...Ch. 10.2 - Rod AB is attached to a hinge at A and to...Ch. 10.2 - Two bars are attached to a single spring of...Ch. 10.2 - Prob. 10.94PCh. 10.2 - The horizontal bar BEH is connected to three...Ch. 10.2 - The horizontal bar BEH is connected to three...Ch. 10.2 - Bars AB and BC, each with a length l and of...Ch. 10.2 - Prob. 10.98PCh. 10.2 - Prob. 10.99PCh. 10.2 - Prob. 10.100PCh. 10 - Determine the vertical force P that must be...Ch. 10 - Determine the couple M that must be applied...Ch. 10 - Determine the force P required to maintain...Ch. 10 - Derive an expression for the magnitude of the...Ch. 10 - Derive an expression for the magnitude of the...Ch. 10 - A vertical load W is applied to the linkage at B....Ch. 10 - A force P with a magnitude of 240 N is applied to...Ch. 10 - Two identical rods ABC and DBE are connected bya...Ch. 10 - Solve Prob. 10.108 assuming that the 24-lb load...Ch. 10 - Two uniform rods each with a mass m and length...Ch. 10 - A homogeneous hemisphere with a radius r isplaced...Ch. 10 - A homogeneous hemisphere with a radius r isplaced...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License