CHEMISTRY-ALEK 360 ACCES 1 SEMESTER ONL
CHEMISTRY-ALEK 360 ACCES 1 SEMESTER ONL
12th Edition
ISBN: 9781259292422
Author: Chang
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.16QP

Which substance in each of the following pairs would you expect to have the higher boiling point? (a) Ne or Xe, (b) CO2 or CS2, (c) CH4 or Cl2, (d) F2 or LiF, (e) NH3 or PH3. Explain your answer.

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The substance with higher boiling point in the given pairs of substances should be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Boiling point is depending upon the strength of inter molecular forces. 

Answer to Problem 11.16QP

Xe has higher boiling point than .

Explanation of Solution

Xe and Ne are mono-atomic gases, so they are nonpolar molecules.

Therefore, only dispersion forces are presented in these molecules; dispersion forces is depends upon the molecular weight. Xe has greater molecular weight as compare to Ne

Boiling point is depending upon the strength of inter molecular forces. 

Hence,

Xe has higher boiling point than Ne.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The substance with higher boiling point in the given pairs of substances should be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Boiling point is depending upon the strength of inter molecular forces. 

Answer to Problem 11.16QP

(b)

CS2 has higher boiling point than CO2.

Explanation of Solution

In CS2 molecule,

There are two C-S presented in CS2 molecule. Sulfur atom has more electronegativity as compared to carbon atom; so all the bonds in CS2 have polarities.

The result of all the bond polarities are the sum of all the vectors associated with each bonds.

The directions of C-S bond vectors are opposite to each other, so they cancel each other.

Hence,

The vector sum or the result of bond polarities for CS2 molecule is zero, so CS2 is a non-polar molecule.

Therefore,

Only dispersion forces are present in CS2.

In CO2 molecule,

There are two C-O presented in CO2 molecule. Sulfur atom has more electronegativity as compared to carbon atom; so all the bonds in CO2 have polarities.

The result of all the bond polarities are the sum of all the vectors associated with each bonds.

The directions of C-O bond vectors are opposite to each other, so they cancel each other.

Hence,

The vector sum or the result of bond polarities for CO2 molecule is zero, so CO2 is a non-polar molecule.

Therefore,

Only dispersion forces are present in CO2.

Dispersion forces is depends upon the molecular weight. CS2 has greater molecular weight as compare to CO2. So CS2 has greater dispersion forces as compare to CO2

Boiling point depends upon the strength of inter molecular forces.

Hence,

CS2 has higher boiling point than CO2.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The substance with higher boiling point in the given pairs of substances should be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Boiling point is depending upon the strength of inter molecular forces. 

Answer to Problem 11.16QP

Cl2 has higher boiling point than CH4.

Explanation of Solution

The Cl-Cl bond in the Cl2 molecule has no bond polarity. So Cl2 molecule is a nonpolar molecule.

Therefore,

Only dispersion forces are present in Cl2.

In CH4 molecule,

There are four C-H presented in CH4 molecule. Carbon atom has more electronegativity as compared to hydrogen; so all the bonds in CH4 have polarities.

The result of all the bond polarities are the sum of all the vectors associated with each bonds.

The directions of C-H bond vectors are opposite to each other, so they cancel each other.

Hence,

The vector sum or the result of bond polarities for CH4 molecule is zero, so CH4 is a non-polar molecule.

Since the CH4 is a nonpolar molecule, it exhibit only one type of intermolecular force, which is dispersion forces.

Dispersion forces is depends upon the molecular weight. Cl2 has greater molecular weight as compare to CH4. So Cl2 have greater dispersion forces as compare to CH4

Boiling point is depending upon the strength of inter molecular forces.

Hence,

Cl2 has higher boiling point than CH4.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The substance with higher boiling point in the given pairs of substances should be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Boiling point is depending upon the strength of inter molecular forces. 

Answer to Problem 11.16QP

LiF has higher boiling point than F2.

Explanation of Solution

The F-F bond in the F2 molecule has no bond polarity. So F2 molecule is a nonpolar molecule.

Therefore,

Only dispersion forces are present in F2.

LiF is an ionic compound, in which Li+ and F- ions are electrostatically attracted each other.

Therefore,

Ionic forces are present in LiF prevalently.

Since ionic forces stronger than dispersion forces, then LiF has greater intermolecular forces as compared to F2.

Boiling point depends upon the strength of inter molecular forces.

Hence,

LiF has higher boiling point than F2.

(e)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The substance with higher boiling point in the given pairs of substances should be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Boiling point is depending upon the strength of inter molecular forces. 

Answer to Problem 11.16QP

NH3 has higher boiling point than PH3.

Explanation of Solution

In ammonia (NH3) molecule,

Three N-H bonds are presented and due to the difference in electronegativities of nitrogen and hydrogen, it has bond polarity. So NH3 molecule is a polar molecule.

Polar molecules exhibit dipole-dipole interactions.

Since the hydrogen atom is bonded to nitrogen, then hydrogen bonding will be presented in between NH3 molecules.

In PH3 molecule,

Three P-H bonds are presented and due to the difference in electronegativities of phosphorus and hydrogen, it has bond polarity. So PH3 molecule is a polar molecule.

Polar molecules exhibit dipole-dipole interactions.

NH3 has dipole-dipole interaction with Hydrogen bonding; but PH3 has only dipole-dipole interactions.

Boiling point depends upon the strength of inter molecular forces.

Hence,

NH3 has higher boiling point than PH3.

Conclusion

The molecules of higher boiling point in the given pairs of molecules are determined according to the polarities or molecular weights of molecules.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Which substance do you expect to have the greatest lattice energy: MgF2, CaF2, or ZrO2? Why?
what type of lattice does the ionic compound Ba3N2 belong?
How can I show the relevant steps to calculate Deltaf H degrees of MgCl(s) given the following data: Enthalpy of sublimation for Mg(s) = + 146 kJ/mol Enthalpy of dissociation of Cl2 (g)= +244 kJ/mol EA (electron affinity ) of Cl- = -349 kJ/mol First ionization energy of magnesium Mg (g) = 738 kJ/mol Lattice energy of MgCl(s) = -676 kJ/mol

Chapter 11 Solutions

CHEMISTRY-ALEK 360 ACCES 1 SEMESTER ONL

Ch. 11.6 - Prob. 1RCCh. 11.8 - Prob. 7PECh. 11.8 - Prob. 1RCCh. 11.8 - Calculate the heat released when 68.0 g of steam...Ch. 11.9 - Which phase diagram (a)(c) corresponds to a...Ch. 11 - Prob. 11.1QPCh. 11 - Explain the term polarizability. What kind of...Ch. 11 - Prob. 11.3QPCh. 11 - Prob. 11.4QPCh. 11 - Prob. 11.5QPCh. 11 - Prob. 11.6QPCh. 11 - The compounds Br2 and ICl have the same number of...Ch. 11 - If you lived in Alaska, which of the following...Ch. 11 - The binary hydrogen compounds of the Group 4A...Ch. 11 - List the types of intermolecular forces that exist...Ch. 11 - Prob. 11.11QPCh. 11 - Prob. 11.12QPCh. 11 - Arrange the following in order of increasing...Ch. 11 - Diethyl ether has a boiling point of 34.5C, and...Ch. 11 - Which member of each of the following pairs of...Ch. 11 - Which substance in each of the following pairs...Ch. 11 - Prob. 11.17QPCh. 11 - What kind of attractive forces must be overcome in...Ch. 11 - The following compounds have the same molecular...Ch. 11 - Prob. 11.20QPCh. 11 - Explain why liquids, unlike gases, are virtually...Ch. 11 - What is surface tension? What is the relationship...Ch. 11 - Prob. 11.23QPCh. 11 - Prob. 11.24QPCh. 11 - A glass can be filled slightly above the rim with...Ch. 11 - Draw diagrams showing the capillary action of (a)...Ch. 11 - Prob. 11.27QPCh. 11 - Why does the viscosity of a liquid decrease with...Ch. 11 - Why is ice less dense than water?Ch. 11 - Outdoor water pipes have to be drained or...Ch. 11 - Predict which of the following liquids has greater...Ch. 11 - Predict the viscosity of ethylene glycol relative...Ch. 11 - Define the following terms: crystalline solid,...Ch. 11 - Describe the geometries of the following cubic...Ch. 11 - Classify the solid states in terms of crystal...Ch. 11 - The melting points of the oxides of the...Ch. 11 - What is the coordination number of each sphere in...Ch. 11 - Calculate the number of spheres that would be...Ch. 11 - Metallic iron crystallizes in a cubic lattice. The...Ch. 11 - Barium metal crystallizes in a body-centered cubic...Ch. 11 - Vanadium crystallizes in a body-centered cubic...Ch. 11 - Europium crystallizes in a body-centered cubic...Ch. 11 - Crystalline silicon has a cubic structure. The...Ch. 11 - A face-centered cubic cell contains 8 X atoms at...Ch. 11 - Define X-ray diffraction. What are the typical...Ch. 11 - Write the Bragg equation. Define every term and...Ch. 11 - When X rays of wavelength 0.090 nm are diffracted...Ch. 11 - The distance between layers in a NaCl crystal is...Ch. 11 - Describe and give examples of the following types...Ch. 11 - Prob. 11.50QPCh. 11 - A solid is hard, brittle, and electrically...Ch. 11 - A solid is soft and has a low melting point (below...Ch. 11 - Prob. 11.53QPCh. 11 - Which of the following are molecular solids and...Ch. 11 - Classify the solid state of the following...Ch. 11 - Prob. 11.56QPCh. 11 - Prob. 11.57QPCh. 11 - Define glass. What is the chief component of...Ch. 11 - What is a phase change? Name all possible changes...Ch. 11 - What is the equilibrium vapor pressure of a...Ch. 11 - Use any one of the phase changes to explain what...Ch. 11 - Define the following terms: (a) molar heat of...Ch. 11 - How is the molar heat of sublimation related to...Ch. 11 - What can we learn about the intermolecular forces...Ch. 11 - The greater the molar heat of vaporization of a...Ch. 11 - Define boiling point. How does the boiling point...Ch. 11 - As a liquid is heated at constant pressure, its...Ch. 11 - Prob. 11.68QPCh. 11 - Prob. 11.69QPCh. 11 - How do the boiling points and melting points of...Ch. 11 - Prob. 11.71QPCh. 11 - Wet clothes dry more quickly on a hot, dry day...Ch. 11 - Which of the following phase transitions gives off...Ch. 11 - A beaker of water is heated to boiling by a Bunsen...Ch. 11 - Calculate the amount of heat (in kJ) required to...Ch. 11 - Prob. 11.76QPCh. 11 - How is the rate of evaporation of a liquid...Ch. 11 - The molar heats of fusion and sublimation of...Ch. 11 - The following compounds, listed with their boiling...Ch. 11 - Prob. 11.80QPCh. 11 - A student hangs wet clothes outdoors on a winter...Ch. 11 - Steam at 100C causes more serious burns than water...Ch. 11 - Vapor pressure measurements at several different...Ch. 11 - Prob. 11.84QPCh. 11 - The vapor pressure of liquid X is lower than that...Ch. 11 - Explain why splashing a small amount of liquid...Ch. 11 - What is a phase diagram? What useful information...Ch. 11 - Explain how waters phase diagram differs from...Ch. 11 - The phase diagram of sulfur is shown. (a) How many...Ch. 11 - A length of wire is placed on top of a block of...Ch. 11 - Prob. 11.91QPCh. 11 - A phase diagram of water is shown at the end of...Ch. 11 - Name the kinds of attractive forces that must be...Ch. 11 - Prob. 11.94QPCh. 11 - Prob. 11.95QPCh. 11 - Prob. 11.96QPCh. 11 - Referring to Figure 11.41, determine the stable...Ch. 11 - Classify the unit cell of molecular iodine.Ch. 11 - A CO2 fire extinguisher is located on the outside...Ch. 11 - What is the vapor pressure of mercury at its...Ch. 11 - A flask of water is connected to a powerful vacuum...Ch. 11 - The liquid-vapor boundary line in the phase...Ch. 11 - Prob. 11.103QPCh. 11 - Prob. 11.104QPCh. 11 - In 2009, thousands of babies in China became ill...Ch. 11 - The vapor pressure of a liquid in a closed...Ch. 11 - A student is given four solid samples labeled W,...Ch. 11 - Prob. 11.108QPCh. 11 - Note the kettle of boiling water on a stove....Ch. 11 - The south pole of Mars is covered with dry ice,...Ch. 11 - The properties of gases, liquids, and solids...Ch. 11 - Select the substance in each pair that should have...Ch. 11 - Prob. 11.113QPCh. 11 - Under the same conditions of temperature and...Ch. 11 - The fluorides of the second-period elements and...Ch. 11 - The standard enthalpy of formation of gaseous...Ch. 11 - The following graph shows approximate plots of ln...Ch. 11 - Determine the final state and its temperature when...Ch. 11 - The distance between Li+ and Cl is 257 pm in solid...Ch. 11 - Heat of hydration, that is, the heat change that...Ch. 11 - Prob. 11.121QPCh. 11 - Calculate the H for the following processes at...Ch. 11 - Gaseous or highly volatile liquid anesthetics are...Ch. 11 - A beaker of water is placed in a closed container....Ch. 11 - The phase diagram of helium is shown. Helium is...Ch. 11 - Prob. 11.126QPCh. 11 - Ozone (O3) is a strong oxidizing agent that can...Ch. 11 - A sample of limestone (CaCO3) is heated in a...Ch. 11 - Silicon used in computer chips must have an...Ch. 11 - Carbon and silicon belong to Group 4A of the...Ch. 11 - Prob. 11.131QPCh. 11 - A 1.20-g sample of water is injected into an...Ch. 11 - What are the advantages of cooking the vegetable...Ch. 11 - A quantitative measure of how efficiently spheres...Ch. 11 - Provide an explanation for each of the following...Ch. 11 - Argon crystallizes in the face-centered cubic...Ch. 11 - A chemistry instructor performed the following...Ch. 11 - Given the phase diagram of carbon shown, answer...Ch. 11 - Swimming coaches sometimes suggest that a drop of...Ch. 11 - Prob. 11.140QPCh. 11 - Why do citrus growers spray their trees with water...Ch. 11 - What is the origin of dark spots on the inner...Ch. 11 - The compound dichlorodifluoromethane (CCl2F2) has...Ch. 11 - A student heated a beaker of cold water (on a...Ch. 11 - Sketch the cooling curves of water from about 110C...Ch. 11 - Iron crystallizes in a body-centered cubic...Ch. 11 - Prob. 11.147QPCh. 11 - Prob. 11.148QPCh. 11 - Prob. 11.149QPCh. 11 - A sample of water shows the following behavior as...Ch. 11 - Prob. 11.151QPCh. 11 - Assuming ideal behavior, calculate the density of...Ch. 11 - Both calcium and strontium crystallize in...Ch. 11 - Is the vapor pressure of a liquid more sensitive...Ch. 11 - Prob. 11.155IMECh. 11 - Without the aid of instruments, give two examples...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY