Connect 1 Semester Access Card For Fluid Mechanics Fundamentals And Applications
Connect 1 Semester Access Card For Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780077670245
Author: CENGEL
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 1CP

Which bicyclist is more likely to go faster: one who keeps his head and his body in the most upright position or one who leans down and brings his body closer to his knees? Why?

Expert Solution & Answer
Check Mark
To determine

Whether bicyclist who keeps his head and his body in the most upright position is faster than the one who leans down and brings his body closer to his knees.

Explanation of Solution

Write the expression for the drag force.

  D=CD12ρU2A........ (I)

Here, the coefficient of the drag is CL, the density is ρ, the flight speed is U and the frontal area is A.

The frontal area of the body is directly proportional to the drag force on the body. If the head of the bicyclist and his body is in the most upright position then the frontal area will also increase. Due to increase in the frontal area, the drag force will also increase. The increase in the drag force results in an increase in the resistance to the free movement of the bicyclist. The increase in the resistance will decrease the velocity of the body.

But, if the bicyclist leans down and brings his body closer to his knees, then the frontal area will decrease. Due to a decrease in the frontal area, the drag force will also decrease. The decrease in the drag force results in the decrease in the resistance to the free movement of the bicyclist. The decrease in the resistance will increase the velocity of the body.

Therefore, the bicyclist one who leans down and brings his body closer to his knees goes faster.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ski lift has a one-way length of 1 km and a vertical rise of 200 m. The chairs are spaced 20 m apart, and each chair can seat three people. The lift is operating at a steady speed of 10 km/h. Neglecting friction and air drag, and assuming that the average mass of each loaded chair is 250 kg, determine the power required to operate this ski lift. Also, estimate the power required to accelerate this ski lift in 9 s to its operating speed when it is first turned on.   The power required to operate the ski lift is 68.125  Numeric ResponseEdit Unavailable. 68.125 correct.kW.   The power required to accelerate this ski life in 9 s to its operating speed is 38.84  Numeric ResponseEdit Unavailable. 38.84 correct.kW.
At what maximum speed does a compressed air torpedo move, which expells 18 kg of air every second at a speed of 118 m/s? The force of water resistance is proportional to the square of the velocity and is equal to 480 N at a speed of 21 m/s. (The solutiom is 44 m/s)
Water at 10°C flows over a 4.8-m-long flat plate with a velocity of 1.15 m/s. If the width of the plate is 6.5 m, calculate the average friction coefficient over the entire plate. (Water properties at 10°C are: ? = 999.7 kg/m3, ? = 1.307 × 10−3 kg/m·s.) (a) 0.00288 (b) 0.00295 (c) 0.00309 (d ) 0.00302 (e) 0.00315

Chapter 11 Solutions

Connect 1 Semester Access Card For Fluid Mechanics Fundamentals And Applications

Ch. 11 - During flow over a given body, the drag force, the...Ch. 11 - During flow over a given slender body such as a...Ch. 11 - What is terminal velocity? How is it determined?Ch. 11 - What is the difference between skin friction drag...Ch. 11 - What is the effect of surface roughness on the...Ch. 11 - Prob. 16CPCh. 11 - What is flow separation? What causes it? What is...Ch. 11 - Prob. 18CPCh. 11 - In general, how does the drag coefficient vary...Ch. 11 - Fairings are attached to the front and back of a...Ch. 11 - Prob. 21PCh. 11 - The resultant of the pressure and wall shear...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - A circular sign has a diameter of 50 cm and is...Ch. 11 - Prob. 28EPCh. 11 - Prob. 29PCh. 11 - At highway speeds, about half of the power...Ch. 11 - A submarine can be treated as an ellipsoid with a...Ch. 11 - Prob. 32EPCh. 11 - Prob. 33PCh. 11 - A 70-kg bicyclist is riding her 1 5-kg bicycle...Ch. 11 - A wind turbine with two or four hollow...Ch. 11 - Prob. 37EPCh. 11 - During steady motion of a vehicle on a level road,...Ch. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - The drag coefficient of a vehicle increases when...Ch. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - How is the average friction coefficient determined...Ch. 11 - What fluid property is responsible for the...Ch. 11 - What does the friction coefficient represent in...Ch. 11 - Prob. 49PCh. 11 - The local atmospheric pressure in Denver, Colorado...Ch. 11 - The top surface of the passenger car of a train...Ch. 11 - The forming section of a plastics plant puts out a...Ch. 11 - Prob. 54EPCh. 11 - Prob. 55EPCh. 11 - Air at 25C and 1 atm is flowing over a long flat...Ch. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Why is flow separation in flow over cylinders...Ch. 11 - Prob. 62CPCh. 11 - Prob. 63CPCh. 11 - Prob. 64PCh. 11 - A 1ong 5-cm-diameter steam pipe passes through...Ch. 11 - Consider 0.8-cm-diameter hail that is falling...Ch. 11 - Prob. 67EPCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71EPCh. 11 - One of the popular demonstrations in science...Ch. 11 - Prob. 73CPCh. 11 - Air is flowing past a symmetrical airfoil at an...Ch. 11 - What is stall? What causes an airfoil to stall?...Ch. 11 - Prob. 76CPCh. 11 - Air is flowing past a symmetrical airfoil at zero...Ch. 11 - Both the lift and the drag of an airfoil increase...Ch. 11 - Prob. 79CPCh. 11 - Prob. 80CPCh. 11 - Prob. 81CPCh. 11 - Prob. 82CPCh. 11 - Prob. 83CPCh. 11 - How do flaps affect the lift and the drag of...Ch. 11 - A small aircraft has a wing area of 35 m2 a lift...Ch. 11 - Consider an aircraft that takes off at 260 km/h...Ch. 11 - Prob. 87PCh. 11 - Prob. 88EPCh. 11 - Prob. 89PCh. 11 - A tennis ball with a mass of 57 and a diameter of...Ch. 11 - Prob. 92EPCh. 11 - Prob. 93PCh. 11 - Consider a light plane that has a total weight of...Ch. 11 - A small airplane has a total mass of 1800 kg and a...Ch. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - A 2-zn-high, 4-zn-wide rectangular advertisement...Ch. 11 - 11-97 A plastic boat whose bottom surface can be...Ch. 11 - Prob. 102PCh. 11 - Prob. 103EPCh. 11 - A commercial airplane has a total mass of 150.000...Ch. 11 - Prob. 105PCh. 11 - A paratrooper and his 8-m-diameter parachute weigh...Ch. 11 - Prob. 107PCh. 11 - Prob. 108PCh. 11 - Prob. 110PCh. 11 - Prob. 112PCh. 11 - Prob. 113PCh. 11 - Prob. 114PCh. 11 - Prob. 117PCh. 11 - Prob. 118PCh. 11 - Prob. 119PCh. 11 - Prob. 120PCh. 11 - Prob. 121PCh. 11 - The region of flow trailing the body where the...Ch. 11 - Prob. 123PCh. 11 - Prob. 124PCh. 11 - Prob. 125PCh. 11 - Prob. 126PCh. 11 - Prob. 127PCh. 11 - Prob. 128PCh. 11 - An airplane has a total mass of 3.000kg and a wing...Ch. 11 - Prob. 130PCh. 11 - Write a report on the history of the reduction of...Ch. 11 - Write a report oil the flips used at the leading...Ch. 11 - Large commercial airplanes cruise at high...Ch. 11 - Many drivers turn off their air conditioners and...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY