Math

Discrete Mathematics With Applicationsa. Let m be any positive integer, and define f ( x ) = x m for each nonnegative real number x. Use the binomial theorem to show that f is an increasing function. b. Let in and ii be any positive integers, and let g ( x ) = x m / n for each nonnegative real number x. Prove that g is an increasing function. Note: The results of exercise 21 are used in the exercises for Sections 11.2 and 11.4.BuyFind*arrow_forward*

5th Edition

EPP + 1 other

Publisher: Cengage Learning,

ISBN: 9781337694193

Chapter 11.1, Problem 21ES

Textbook Problem

a. Let *m *be any positive integer, and define

for each nonnegative real number *x. *Use the binomial theorem to show that *f *is an increasing function.

b. Let *in *and ii be any positive integers, and let
*x. *Prove that *g *is an increasing function. *Note: The results of exercise 21 are used in the exercises for Sections 11.2 and 11.4.*

Discrete Mathematics With Applications

Show all chapter solutions

Ch. 11.1 - If f is a real-valued function of a real variable,...Ch. 11.1 - A point (x,y) lies on the graph of a real-valued...Ch. 11.1 - If a is any nonnegative real number, then the...Ch. 11.1 - Given a function f:RR and a real number M, the...Ch. 11.1 - Given a function f:RR , to prove that f is...Ch. 11.1 - Given a function f:RR , to prove that f is...Ch. 11.1 - The graph of a function f is shown below. a. Is...Ch. 11.1 - The graph of a function g is shown below. a. Is...Ch. 11.1 - Sketch the graphs of the power functions p1/3and...Ch. 11.1 - Sketch the graphs of the power functions p3 and p4...

Ch. 11.1 - Sketch the graphs of y=2x and y=2x for each real...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - The graph of a function f is shown below. Find the...Ch. 11.1 - Show that the function f:RR defined by the formula...Ch. 11.1 - Show that the function g:RR defined by the formula...Ch. 11.1 - Let h be the function from R to R defined by the...Ch. 11.1 - Let k:RR be the function defined by the formula...Ch. 11.1 - Show that if a function f:RRis increasing, then f...Ch. 11.1 - Given real-valued functions f and g with the same...Ch. 11.1 - a. Let m be any positive integer, and define...Ch. 11.1 - Let f be the function whose graph follows. Sketch...Ch. 11.1 - Let h be the function whose graph is shown below....Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - In 27 and 28, functions f and g are defined. In...Ch. 11.1 - In 27 and 28, functions f and g are defined. In...Ch. 11.2 - A sentence of the form Ag(n)f(n) for every na...Ch. 11.2 - A sentence of the tirm “ 0f(n)Bg(n) for every nb ”...Ch. 11.2 - A sentence of the form “ Ag(n)f(n)Bg(n)for every...Ch. 11.2 - When n1,n n2 and n2 n5__________.Ch. 11.2 - According to the theorem on polynomial orders, if...Ch. 11.2 - If n is a positive integer, then 1+2+3++n has...Ch. 11.2 - The following is a formal definition for ...Ch. 11.2 - The following is a formal definition for...Ch. 11.2 - The following is a formal definition for ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - a. Show that for any integer n1,02n2+15n+421n2 ....Ch. 11.2 - a. Show that for any integer n1,023n4+8n2+4n35n4 ....Ch. 11.2 - a. Show that for any integer n1,07n3+10n2+320n3 ....Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that n2is...Ch. 11.2 - Prove Theorem 11.2.7(b): If f and g are...Ch. 11.2 - Prove Theorem 11.2.1(b): If f and g are...Ch. 11.2 - Without using Theorem 11.2.4 prove that n5 is not...Ch. 11.2 - Prove Theorem 11.2.4: If f is a real-valued...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - Suppose P(n)=amnm+am1nm1++a2n2+a1n+a0 , where all...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - a. Prove: If c is a positive real number and if f...Ch. 11.2 - Prove: If c is a positive real number and...Ch. 11.2 - What can you say about a function f with the...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - a. Use mathematical induction to prove that if n...Ch. 11.2 - a. Let x be any positive real number. Use...Ch. 11.2 - Prove Theorem 11.2.6(b): If f and g are...Ch. 11.2 - Prove Theorem 11.2.7(a): If f is a real-valued...Ch. 11.2 - Prove Theorem 11.2.8: a. Let f and g be...Ch. 11.2 - Prove Theorem 11.2.9: a. Let f1,f2 , and g be...Ch. 11.3 - When an algorithm segment contains a nested...Ch. 11.3 - In the worst case for an input array of length n,...Ch. 11.3 - The worst-case order of the insertion sort...Ch. 11.3 - Suppose a computer takes 1 nanosecond ( =109...Ch. 11.3 - Suppose an algorithm requires cn2operations when...Ch. 11.3 - Suppose an algorithm requires cn3operations when...Ch. 11.3 - Exercises 4—5 explore the fact that for relatively...Ch. 11.3 - Exercises 4—5 explore the fact that for relatively...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - Construct a table showing the result of each step...Ch. 11.3 - Construct a table showing the result of each step...Ch. 11.3 - Construct a trace table showing the action of...Ch. 11.3 - Construct a trace table showing the action of...Ch. 11.3 - How many comparisons between values of a[j] and x...Ch. 11.3 - How many comparisons between values of a[j] and x...Ch. 11.3 - According to Example 11.3.6. the maximum number of...Ch. 11.3 - Consider the recurrence relation that arose in...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.4 - The domain of any exponential function is , and...Ch. 11.4 - The domain of any logarithmic function is and its...Ch. 11.4 - If k is an integer and 2kx2k+1 then...Ch. 11.4 - If b is a real number with b1 , then there is a...Ch. 11.4 - If n is a positive integer, then 1+12+13++1nhas...Ch. 11.4 - Graph each function defined in 1-8. 1. f(x)=3x for...Ch. 11.4 - Graph each function defined in 1—8. 2. g(x)=(13)x...Ch. 11.4 - Graph each function defined in 1—8. 3. h(x)=log10x...Ch. 11.4 - Graph each function defined in 1—8. 4. k(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 5. F(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 6. G(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 7. H(x)=xlog2x...Ch. 11.4 - Graph each function defined in 1—8. 8....Ch. 11.4 - The scale of the graph shown in Figure 11.4.1 is...Ch. 11.4 - a. Use the definition of logarithm to show that...Ch. 11.4 - Let b1 . a. Use the fact that u=logbvv=bu to show...Ch. 11.4 - Give a graphical interpretation for property...Ch. 11.4 - Suppose a positive real number x satisfies the...Ch. 11.4 - a. Prove that if x is a positive real number and k...Ch. 11.4 - If n is an odd integer and n1 ,is log2(n1)=log2(n)...Ch. 11.4 - If, n is an odd integer and n1 , is...Ch. 11.4 - If n is an odd integer and n1 , is...Ch. 11.4 - In 18 and 19, indicate how many binary digits are...Ch. 11.4 - In 18 and 19, indicate how many binary digits are...Ch. 11.4 - It was shown in the text that the number of binary...Ch. 11.4 - In each of 21 and 22, a sequence is specified by a...Ch. 11.4 - In each of 21 and 22, a sequence is specified by a...Ch. 11.4 - Define a sequence c1,c2,c3,recursively as follows:...Ch. 11.4 - Use strong mathematical induction to show that for...Ch. 11.4 - Exercises 25 and 26 refer to properties 11.4.9 and...Ch. 11.4 - Exercises 25 and 26 refer to properties 11.4.9 and...Ch. 11.4 - Use Theorems 11.2.7-11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7-11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7—11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7—11.2.9 and properties 11.4.11,...Ch. 11.4 - Show that 4n is not O(2n) .Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Quantities of the form k1n+k2nlognfor positive...Ch. 11.4 - Calculate the values of the harmonic sums...Ch. 11.4 - Use part (d) of Example 11.4.7 to show that...Ch. 11.4 - Show that log2n is (log2n) .Ch. 11.4 - Show that log2n is (log2n) .Ch. 11.4 - Prove by mathematical induction that n10n for...Ch. 11.4 - Prove by mathematical induction that log2nn for...Ch. 11.4 - Show that if n is a variable that takes positive...Ch. 11.4 - Let n be a variable that takes positive integer...Ch. 11.4 - For each positive real number u,log2uuUse this...Ch. 11.4 - Use the result of exercise 47 above to prove the...Ch. 11.4 - Exercises 49 and 50 use L’Hôpital’s rule from...Ch. 11.4 - Exercises 49 and 50 use L’Hôpital’s rule from...Ch. 11.4 - Complete the proof in Example 11.4.4.Ch. 11.5 - To solve a problem using a divide-and-conquer...Ch. 11.5 - To search an array using the binary search...Ch. 11.5 - The worst-case order of the binary search...Ch. 11.5 - To sort an array using the merge sort algorithm,...Ch. 11.5 - The worst-case order of the merge sort algorithm...Ch. 11.5 - Use the facts that log2103.32 and that for each...Ch. 11.5 - Suppose an algorithm requires clog2n operations...Ch. 11.5 - Exercises 3 and 4 illustrate that for relatively...Ch. 11.5 - Exercises 3 and 4 illustrate that for relatively...Ch. 11.5 - In 5 and 6, trace the action of the binary search...Ch. 11.5 - In 5 and 6, trace the action of the binary search...Ch. 11.5 - Suppose bot and top are positive integers with...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Complete the proof of case 2 of the strong...Ch. 11.5 - Trace the modified binary search algorithm for the...Ch. 11.5 - Suppose an array of length k is input to the while...Ch. 11.5 - Let wnbe the number of iterations of the while...Ch. 11.5 - In 20 and 21, draw a diagram like Figure 11.5.4 to...Ch. 11.5 - In 20 and 21, draw a diagram like Figure 11.5.4 to...Ch. 11.5 - In 22 and 23, draw a diagram like Figure 11.5.5 to...Ch. 11.5 - In 22 and 23, draw a diagram like Figure 11.5.5 to...Ch. 11.5 - Show that given an array a[bot],a[bot+1],,a[top]of...Ch. 11.5 - The recurrence relation for m1,m2,m3,,which arises...Ch. 11.5 - It might seem that n1 multiplications are needed...

Find more solutions based on key concepts

Show solutions Subtract: 16ft 512 in. 7ft 958 in.

Mathematics For Machine Technology

Find the following percentiles for the data listed in Example 4: 12th percentile

Elementary Technical Mathematics

In Exercises 31 to 40, answer each question. Round z-scores to the nearest hundredth and then find the required...

Mathematical Excursions (MindTap Course List)

In Exercises 1528, one card is drawn from a well-shuffled deck of fifty-two cards no jokers. In Exercises 1728,...

Mathematics: A Practical Odyssey

In Problems 1-16, find each function’s relative maxima, relative minima, and saddle points, if they exist.
9.
...

Mathematical Applications for the Management, Life, and Social Sciences

Convert each expression in Exercises 25-50 into its technology formula equivalent as in the table in the text. ...

Finite Mathematics

Write a system of linear equations for the augmented matrix of Exercise 27. Using the results of Exercise 27, d...

Finite Mathematics for the Managerial, Life, and Social Sciences

Evaluating a Definite Integral In Exercises 47-52, evaluate the definite integral. q1(8ti+tjk)dt

Calculus: Early Transcendental Functions

The equation of the plane formed by the two lines
and
is:
2(x − 3) − 4(y − 1) + (z − 5) = 0
(x − 3) + 2(y − 1...

Study Guide for Stewart's Multivariable Calculus, 8th

Find the total length of the astroid x = a cos3, y = a sin3, where a 0.

Single Variable Calculus

Determining Continuity In Exercises 11-40, describe the interval(s) on which the function is continuous. Explai...

Calculus: An Applied Approach (MindTap Course List)

The following data are from a repeated-measures study examining the effect of a treatment by measuring a group ...

Statistics for The Behavioral Sciences (MindTap Course List)

16 Find the Jacobian of the transformation. x=scost,y=ssint

Calculus (MindTap Course List)

Show that each of the following statements is an identity by transforming the left side of each one into the ri...

Trigonometry (MindTap Course List)

Basic Computation: Coefficient of Variation. Chebyshev Interval Consider population data with =20 and =2. (a) C...

Understanding Basic Statistics

Finding a Derivative In Exercises 65-74, find the derivative of the function. y=cosh1(3x)

Calculus of a Single Variable

Vehicle speed on a particular bridge in China can be modeled as normally distributed (Fatigue Reliability Asses...

Probability and Statistics for Engineering and the Sciences

The velocity of a wave of length L in deep water is v=KLC+CL where K and C are known positive constants. What i...

Single Variable Calculus: Early Transcendentals, Volume I

In each expression, factor the difference of two cubes. 343y3z3

College Algebra (MindTap Course List)

Finding Cross Products In Exercises 3336, find (a) u v, (b) v u, and (c) v v. u=6i5j+2k v=4i+2j+3k

Calculus: Early Transcendental Functions (MindTap Course List)

For Problems 15-26, simplify each of the numerical expressions. 3(24)4(79)+6

Intermediate Algebra

Why are studies that examine the effects of aging not considered true experiments?

Research Methods for the Behavioral Sciences (MindTap Course List)

The article Facebook Use and Academic Performance Among College Students, Computers in Human Behavior [2015]: 2...

Introduction To Statistics And Data Analysis

Consider the following hypothesis test: H0:45Ha:45 A sample of 36 is used. Identify the p-value and state your ...

Essentials Of Statistics For Business & Economics

Distinguish between descriptive and inferential statistics. Describe a research situation that would use each t...

Essentials Of Statistics

In Exercises 17 to 22, draw an ideally placed figure in the coordinate system; then name the coordinates of eac...

Elementary Geometry For College Students, 7e

Evaluate the expression sin Exercises 116. (23)2

Applied Calculus

The left-hand and right-hand derivatives off at a are defined by f(a)=limh0f(a+h)f(a)aandf+(a)=limh0+f(a+h)f(a)...

Single Variable Calculus: Early Transcendentals

True or False: x2+1x3dx may be solved using a trigonometric substitution.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Limit and ContinuityIn Exercises 1318, find the limit (if it exists) and discuss the continuity of the function...

Calculus (MindTap Course List)

Describe the elements in the groups of symmetries of the given unbounded figures.

Elements Of Modern Algebra

Solving Basic Trigonometric Equations Solve the given equation. 11. sin = 0.45

Precalculus: Mathematics for Calculus (Standalone Book)

Show that the curve with parametric equations x = t cos t, y = t sin t, z = t lies on the cone z2 = x2 + y2, an...

Multivariable Calculus

Define a nonequivalent group design and identify examples of this research design when it appears in a research...

Research Methods for the Behavioral Sciences (MindTap Course List)

Cornu Spiral The cornu spiral is given by x(t)=0tcos(u22)duandy(t)=0tsin(u22)du The spiral shown in the figure ...

Multivariable Calculus

Each year Bloomberg Businessweek publishes statistics on the worlds 1000 largest companies. A companys price/ea...

STATISTICS F/BUSINESS+ECONOMICS-TEXT

Convert the following fractions to decimals. Round the quotients to hundredths. 1516

Contemporary Mathematics for Business & Consumers

Two samples are selected from the same population. For each of the following, calculate how much difference is ...

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

Convert each expression in Exercises 25-50 into its technology formula equivalent as in the table in the text. ...

Finite Mathematics and Applied Calculus (MindTap Course List)

Determine whether or not the vector field is conservative. If it is conservative, find a function f such that F...

Calculus: Early Transcendentals

Worker Efficiency An efficiency study conducted for Elektra Electronics showed that the number of Space Command...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In Review Exercises 1 to 6, use the figure shown. Construct an isosceles triangle with vertex angle B and an al...

Elementary Geometry for College Students

Customer arrivals at a bank are random and independent; the probability of an arrival in anyone-minute period i...

Statistics for Business & Economics, Revised (MindTap Course List)

Reminder Round all answers to two decimal places unless otherwise indicated. A Car Moving in an Unusual WayIn m...

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

In the following exercises, use averages of values at the left (L) and tight (R) endpoints to compute the integ...

Calculus Volume 2

6. The formula for the x-values is a little harder. The most helpful points from the table are (1,1),(1,3),(3,1...

Calculus Volume 1

In Problems 4954 match the given graph with one of the functions in (a)(f). The graph of f(t) is given in Figur...

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

Identifying Terms and Coefficients In Exercises 53-58, identify the terms. Then identify the coefficients of th...

College Algebra

53. Suppose N = 15 and r = 4. What is the probability of x = 3 for n = 10?

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)