Concept explainers
IDEAL HEIGHTS AND WEIGHTS FOR WOMEN The Venus Health Club for Women provides its members with the following table, which gives the average desirable weight (in pounds) for women of a given height (in inches):
Height,
|
|
|
|
|
|
Weight,
|
|
|
|
|
|
a. Plot the weight
b. Draw a straight line
c. Derive an equation of the line
d. Using the equation of part
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Finite Mathematics for the Managerial, Life, and Social Sciences-Custom Edition
Additional Math Textbook Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Numerical Analysis
Thinking Mathematically (6th Edition)
Excursions in Modern Mathematics (9th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Interpret for the plot belowarrow_forwardThe data represents the heights of eruptions by a geyser. Height of eruption (in.) 900 69 34 50 Use the heights to construct a stemplot. Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. 80 50 40 70 50 60 72 52 52 65 69 60 79 70 46 81 Which plot represents a stemplot of the data? A. В. C. 3 4 3 4 3 0 26 4 0 29 4 00 2 5 99 5 00 29 6 00 1 7 002 6 4 |0 6 5 000 22 6 |00 5 99 70029 5 000 6 |0 09 700 5 8 0 8 0 1 8 0 29 9 10 9 |0 1 Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. The values closest to the middle are inches and inches. (Type whole numbers. Use ascending order.) B.arrow_forwardThe height of bedridden patients is often estimated from the length of the patient's ulna, the distance between the point on the elbow and the prominent bone on the wrist. Eight men over the age of 65 had both their height (in centimeters) and the length of their ulna (in centimeters) measured. The data are given in the table below. Ulna length (cm) 20 23 24 26 27 29 30 31 Height (cm) 160 163 166 168 171 178 182 186 Let x denote a patient's ulna length (in cm) and y denote the patient's height (in cm). Assume that the population distributions for both ulna length and height are approximately normal. The following summary measures were obtained from the data. X = 26.25, ỹ = 171.75, SSxx = 99.5, SSyy= 609.5, SSxy= 238.5 ху We wish to find the least squares regression line for the data in this table using ulna length as an independent variable and height as a dependent variable. Use the information to estimate the slope of the least squares regression line. Enter your answer using three…arrow_forward
- The height of bedridden patients is often estimated from the length of the patient's ulna, the distance between the point on the elbow and the prominent bone on the wrist. Eight men over the age of 65 had both their height (in centimeters) and the length of their ulna (in centimeters) measured. The data are given in the table below. Ulna length (cm) 20 23 24 26 27 29 30 31 Height (cm) 160 163 166 168 171 178 182 186 Let x denote a patient's ulna length (in cm) and y denote the patient's height (in cm). Assume that the population distributions for both ulna length and height are approximately normal. The following summary measures were obtained from the data. X = 26.25, ỹ = 171.75, SSxx = 99.5, SSyy= 609.5, SSxy= 238.5 ху We wish to find the least squares regression line for the data in this table using ulna length as an independent variable and height as a dependent variable. Estimate the y-intercept of the least squares regression line. Enter your answer using three decimal places.arrow_forwardThe data represents the heights of eruptions by a geyser. Height of eruption (in.) 61 39 50 900 Use the heights to construct a stemplot. Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. 80 50 40 70 50 60 72 57 59 62 69 60 73 70 41 83 Which plot represents a stemplot of the data? A. В. C. 3 019 4 017 5 000 3 9 3 9 4 0 1 5 0007 9 6 001 29 7002 3 4 001279 5 00 2 3 6 00 3 70019 8 0 6 |0 0 9 700 2 8 0 2 3 8 0 3 9 0 3 9 To 9 |0 Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. The values closest to the middle are inches and inches. (Type whole numbers. Use ascending order.)arrow_forwardThe data represents the heights of eruptions by a geyser. Height of eruption (in.) 90 62 34 50 Use the heights to construct a stemplot. Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. 80 50 40 70 50 60 75 57 52 69 62 60 74 70 48 88 Which plot represents a stemplot of the data? O A. OB. C. 3028 4 027 5 000 6 002 7009 8045 9 08 3 4 4002279 50045 6 |008 70028 8 0 9 0 3 4 408 5 00027 6 00229 7 00 45 808 9 0 Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. The values closest to the middle are inches and inches. (Type whole numbers. Use ascending order.). Click to select your answer(s). 4:14 PM O Type here to search a 17 6/4/2021 hp f3 ins prt sc f5 f6 f8 fg f10 f12 esc IOI dele & back 2. 4 E T. Y 00 L5. %24 3. %23arrow_forward
- The data represents the heights of eruptions by a geyser. Use the heights to construct a stemplot. Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. Which plot represents a stemplot of the data? O A. 3089 4036 5004 6 008 7 001 8004 903 ★ B. 3 8 4 09 500038 6 01468 70004 803 90 Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. inches. The values closest to the middle are inches and Type whole numbers. Use ascending order.) C C. 38 4013468 50004 6 003 7 0089 80 90 Height of eruption (in.) 66 38 50 90 80 50 40 70 50 64 74 53 58 61 68 60 70 70 49 83arrow_forwardThe data represents the heights of eruptions by a geyser. Height of eruption (in.) 61 39 50 90P Use the heights to construct a stemplot. Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. 80 50 40 70 50 60 72 57 59 62 69 60 73 70 41 83 Which plot represents a stemplot of the data? A. В. C. 3 9 4 0 1 5 00079 6 001 2 9 7 0 0 2 3 8 0 3 3 9 3 0 1 9 4 0 17 5 00 0 6 0 0 9 4 0 0 1 279 5 00 2 3 6 00 3 70 0 1 9 7 0 0 2 8 0 2 3 8 0 9 0 3 9 9 |0arrow_forwardWhen creating the dot plot, how are multiple data points for a single score displayed? a. A larger size dot is used; the size of the dot is directly proportional to the number of data points. b. More than one dot is used; dots are placed side by side creating a wider interval. c. A dot plot is innappropriate when multiple data points exist for a single score. d. Multiple dots, representing each data point, are replaced on top of one another.arrow_forward
- The data represents the heights of eruptions by a geyser. Use the heights to construct a stemplot. Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. Height of eruption (in.) 69 37 50 90- 80 50 40 70 50 64 72 57 59 69 67 60 77 70 48 86 Which plot represents a stemplot of the data? A. 37 408 500079 604799 70027 806 90 B. 3 089 4079 5 004 6 007 7009 8 027 906 Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. The values closest to the middle are inches and inches. (Type whole numbers. Use ascending order.) ○ C. 37 4047799 50027 6006 70089 80 90arrow_forwardThe data represents the heights of eruptions by a geyser. Use the heights to construct a stemplot. Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. Which plot represents a stemplot of the data? O A. 3 1 4022689 50037 6 001 7 0067 80 90 O B. inches. 3067 4028 5002 6 006 71009 8 037 901 Identify the two values that are closest to the middle when the data are sorted in order from lowest to highest. The values closest to the middle are inches and (Type whole numbers. Use ascending order.) G O C. 31 4 06 00027 602689 70037 8 01 90 Height of eruption (in.) 68 31 50 90 80 50 40 70 50 62 77 52 57 69 66 60 73 70 46 81arrow_forwardWhen an anthropologist finds skeletal remains, they need to figure out the height of the person. The height of a person (in cm) and the length of their metacarpal bone (in cm) were collected for 22 sets of skeletal remains. The data are in the table below. X, length of metacarpal Y, height 42 161 43 177 49 185 42 165 45 173 41 165 44 171 43 170 42 175 47 171 38 157 50 181 40 155 39 159 48 171 52 176 48 183 47 172 46 173 45 173 46 169 40 160 a) State the random variables. rv X = of rv Y = of b) The symbol and value of the correlation coefficient are as follows: Round final answer to 3 decimal places. = Interpret this value: There is a strong relation between length of metacarpal and height for sets of skeletal remains. c) The symbol and value of the coefficient of determination are as follows: Round final answer to 3 decimal places. =…arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,