Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780077624811
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 10P
Nitrogen gas at 800 R and 50 psia behaves as an ideal gas. Estimate the cp and cv of the nitrogen at this state, using enthalpy and internal energy data from Table A–18E, and compare them to the values listed in Table A–2Eb.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There are 1.5 kgm of gas for which R=0.377kJ/kg-K and k=1.3 that undergo an isometric process from an initial state of 550kPa and 60C. During the process there are 1500kJ of heat removed from the gas. Find the change in enthalphy (kJ)
Find the specific volume of steam at 90 psia and 650˚F using the ideal gas law. What is the percent error compared with the value in the steam tables. Repeat for 5000 psia and 700˚F, and for 3000 psia and 700˚F. What do you conclude from these comparisons?
During an adiabatic expansion the temperature of 0.450 mole of Argon (Ar) drops from 50 oC to 10.0 oC. The argon may be treated as an ideal gas.(a) Draw a p-V diagram for this process.(b) How much work does the gas do?(c) What is the change in internal energy of the gas?
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- . Determine the h, s and °SH of steam at 0.5 MPa and 520°C using Mollier Chart.arrow_forwardWhat is the Δr xn G o (in KJ/mole) for a mole of an ideal gas as pressure changes from 0.1 Pa to 1 x10 5 Pa? (NOTE: Express answer in THREE SIGNIFICANT FIGURES.)arrow_forwardA 2.80-mol sample of helium gas initially at 300 K, and 0.400 atm is compressed isothermally to 1.40 atm. Note that the helium behaves as an ideal gas. (a) Find the final volume of the gas. m³ (b) Find the work done on the gas. kJ (c) Find the energy transferred by heat. kJarrow_forward
- A 2.170-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°C. Determine the heat added in kJ. Use steam tables of Keenan et alarrow_forwardIf 10 kg of ice at 0C is added to 2 kg of steam at 100C, the temperature of resulting mixture isarrow_forwarduestion 4: (a) An 88-litre gas cylinder is filled with propane gas at a pressure of 1.15 MPa and 18°C. The propane is used to fuel a gas burner. After some time, the pressure and temperature are 210 kPa and 23°C respectively. Determine the mass of propane used. The molar mass of propane is 44 g/mole. (b) A piston-cylinder device filled with air at 365 kPa and 12°C, has an initial volume of 1.3 litres. The air is expanded at constant pressure to a volume of 3.6 litres and 516°C. Determine the amount of heat and work involved in this process and state whether the heat and work are into, or out of the gas.arrow_forward
- A diving air tank bottle with volume 11.37lt contains 2.4kgr of N2 and 0.6 kgr of 02. Calculate the pressure of the vessel at temperature 300K. The molecular weight of nitrogen (N2) is 28 kgr/kmol and the molecular weight of oxygen is 32 kgr/kmol. The ideal gas constant is 8.314 kJ/(kmol.K). Provide your answer in bars (105Pa).arrow_forward1. An ideal gas at a pressure of 4120 kPaa and a temperature of 25 °C is contained in a cylinder with a volume of 20 m³. A certain amount of the gas is released so that the pressure in the cylinder drops to 1730 kPaa. Expansion of the gas is isentropic. The heat capacity ratio is 1.4 and the gas constant is 0.286 kJ/kg-ºC. Determine the mass of gas remaining in the cylinder, in kg.arrow_forwardYou have a 3.00-liter container filled with N₂ at 25°C and 4.25 atm pressure connected to a 2.00-liter container filled with Ar at 25°C and 2.75 atm pressure. A stopcock connecting the containers is opened and the gases are allowed to equilibrate between the two containers. What is the final pressure (in atm) in the two containers if the temperature remains at 25°C? Assume ideal behavior.arrow_forward
- Saturated liquid ammonia at 324.4 K is heated isobarically until it reaches a quality of 60%. Determine the specific entropy change of the ammonia using the using the generalized compressibility charts to account for deviations from ideal gas behavior.arrow_forwardConsider an ideal monatomic gas. Here, take N as constant. We can take any two arguments like (p, V) or (E, V) or (p, T) and use them as variables representing the macro state. Using E = 3 / 2Nk (B) T for a monatomic ideal gas: A) Take (E, V) as macroscopic variables and express dW and dQ in terms of these variables ( Find the dV expressions). B) Check that dW and dQ are not full differentials. Prove that dQ / T is the exact differential. C) Repeat the above process, taking (p, T) as macroscopic variables.arrow_forwardSee Attachedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license