Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
1st Edition
ISBN: 9781111580704
Author: Kevin D. Dahm, Donald P. Visco
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 12.7, Problem 30P

Use γ-ϕ approach to model the vapor-liquid equilibrium of an ethyne [acetylene] (1) + 1, 1 difluoro ethane [R-152a] (2) system at 303.2 K. Treat the

Chapter 12.7, Problem 30P, Use - approach to model the vapor-liquid equilibrium of an ethyne [acetylene] (1) + 1, 1 difluoro , example  1

liquid using the 2-parameter Margules equation and the vapor as an ideal solution (described by the virial equation). Report the following:

  • Raoult’s Law predictions
  • Modified Raoult’s Law predictions (ideal gas for the vapor phase)
  • γ-ϕ modeling results Experimental data as symbols given in Table P12-30

Table P12-30 Vapor-liquid equilibrium of ethyne (1) + R-152a (2) at 303.2K.

Chapter 12.7, Problem 30P, Use - approach to model the vapor-liquid equilibrium of an ethyne [acetylene] (1) + 1, 1 difluoro , example  2

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

Using gamma phi modelling approach, predict the Pxy diagram for the system using the two parameter Wilson equation and the virial equation.

Concept Introduction:

Write the Antoine equation for the component.

log10(P1sat)=ABT+C

Write the expression to calculate the parameter a for component.

a=27R2Tc264Pc

Here, gas constant is R, critical temperature and critical pressure for component are Tc and Pc respectively.

Write the expression to calculate the parameter b for component.

b=RTc8Pc

Write the expression for the van Laar parameters.

L12=b1RT(a1b1a2b2)2

L21=b2RT(a1b1a2b2)2

Here, temperature is T, parameters of the van Laar equation using the VDW definitions is L12,L21, and equation of state parameter a1,b1,a2,andb2.

Write the activity coefficients from the van Laar model for components 1 and 2.

ln[γ1]=L12(1+L12x1L21x2)2

ln[γ2]=L21(1+L21x2L12x1)2

Here, liquid phase mole fraction for component 1 and 2 is x1andx2 respectively.

Write the expression to calculate the value of B1.

B1=(B0+ω1B1)RTc,1Pc,1=[(0.0830.422Tr,11.6)+ω1(0.1390.172Tr,14.2)]RTc,1Pc,1

Here, reduced temperature of component 1 is Tr,1, acentric factor of component 1 is ω1, and second virial coefficients are B0andB1.

Write the expression to calculate the value of B2.

B2=(B0+ω2B1)RTc,2Pc,2=[(0.0830.422Tr,21.6)+ω2(0.1390.172Tr,24.2)]RTc,2Pc,2

Here, reduced temperature of component 1 is Tr,1, acentric factor of component 1 is ω1, and second virial coefficients are B0andB1.

Write the expression to calculate the fugacity coefficient of component 1(φ^1,sat).

ln(φ^1,sat)=P1satB1RT

Write the expression to calculate the fugacity coefficient of component 2(φ^2,sat).

ln(φ^2,sat)=P2satB2RT

Write the expression for Raoult’s law equation.

P=x1P1sat+x2P2sat

y1=x1P1satP

Write the expression for the vapor definitions of the fugacity coefficients for component 1 and 2.

ln(φ^1)=PRT[B11+y22(2B12B11B22)]

ln(φ^2)=PRT[B22+y12(2B12B11B22)]

Here, system pressure is P, vapor phase mole fraction for components 1 and 2 is y1andy2, second-virial coefficient of component 1 interacting with component 2 is B12,

second-virial coefficient of pure component 1 and 2 is B11andB22 respectively.

Write the 2-parameter Margules equation.

ln(γ1)=A12

ln(γ2)=A21

Here, coefficient of 2-parameter Margules equation is A12andA21 respectively.

Write the excess molar Gibbs free energy for model.

G_ERT=x1x2(A21x1+A12x2)

Write the excess molar Gibbs free energy for experimental.

G_ERT=x1ln[γ1]+x2ln[γ2]

Write the objective function value.

OBJ=1Ni=1N[(G_ERT)iModel(G_ERT)iExp(G_ERT)iExp]2

Here, total number of data point is N.

Explanation of Solution

Referring to Appendix C.1, “Critical point, enthalpy of phase change, and liquid molar volume”, obtains the critical temperature, critical pressure and acentric factor of Acetylene (1) and 1,1 Difluroethane (2) as in Table (1).

Compound

Critical temperature

Tc(K)

Reduced temperature

Tr(K)

Critical pressure

Pc(bar)

Acentric factor

(ω)

Liquid molar volume

V_L(m3/mol)

Acetylene (1)308.30.983461.140.18943.47×106
Difluroethane (2)386.410.784645.170.27574.51×106

Referring to Appendix E, “Antoine Coefficients”, obtain the constants A, B, and C for component (1) as 4.66141, 909.079, and 7.947 respectively.

Calculate the Antoine equation for the component propane (1).

log10(P1sat)=ABT+C        (1)

Substitute 30.05°C for T, 4.66141 for A, 909.079 for B, and 7.947 for C in Equation (1).

log10(P1sat)=4.66141909.0797.947+30.05P1sat=1019.2636P1sat=5.4499×1020mmHg×1bar750.06mmHgP1sat=7.26×1023bar

Refer the Appendix E, “Antoine Coefficients”, obtain the constants A, B, and C for component as 7.03000, 910.000, and 244.000 respectively.

Calculate the Antoine equation for the component (2).

log10(P2sat)=ABT+C        (2)

Substitute 30.05°C for T, 7.03 for A, 910.0 for B, and 244.0 for C in Equation (2).

log10(P2sat)=7.03910.030.05°C+244P2sat=103.709=5121.98mmHg×1bar750.06mmHg=6.828bar

Calculate the parameter a1 for component 1.

a1=27R2Tc,1264Pc,1        (3)

Here, critical temperature and critical pressure for component 1 are Tc,1 and Pc,1 respectively.

Substitute 308.3 K for Tc,1, 61.14 bar for Pc,1, and 8.314×105m3barmolK for R in Equation (3).

a1=27(8.314×105m3barmolK)2(308.3K)264(61.14bar)=4.53×106m6barmol2

Calculate the parameter a2 for component 2.

a2=27R2Tc,2264Pc,2        (4)

Here, critical temperature and critical pressure for component 2 are Tc,2 and Pc,2 respectively

Substitute 386.41 K for Tc,2, 45.17 bar for Pc,2, and 8.314×105m3barmolK for R in Equation (4).

a2=27(8.314×105m3barmolK)2(386.41K)264(45.17bar)=9.63×106m6barmol2

Calculate the parameter b1 for component 1.

b1=RTc,18Pc,1        (5)

Substitute 308.3 K for Tc,1, 61.14 bar for Pc,1, and 8.314×105m3barmolK for R in Equation (5).

b1=(8.314×105m3barmolK)308.3K8(61.14bar)=5.24×105m3mol

Calculate the parameter b2 for component 2.

b2=RTc,28Pc,2        (6)

Substitute 386.41 K for Tc,2, 45.17 bar for Pc,2, and 8.314×105m3barmolK for R in Equation (6).

b2=(8.314×105m3barmolK)386.41K8(45.17bar)=8.89×105m3mol

Calculate the van Laar parameters (L12).

L12=b1RT(a1b1a2b2)2        (7)

Substitute 8.314×105m3barmolK for R, 30.05°C for T, 4.533×106m6barmol2 for a1, 9.639×105m6barmol2 for a2, 5.240×105m3mol for b1, and 8.890×105m3mol for b2 in Equation (7).

L12=b1RT(a1b1a2b2)2=5.240×105m3mol(8.314×105m3barmolK)30.05°C(4.533×106m6barmol25.240×105m3mol9.639×105m6barmol28.890×105m3mol)2=5.240×105m3mol(8.314×105m3barmolK)(30.05+273.15)K(4.533×106m6barmol25.240×105m3mol9.639×105m6barmol28.890×105m3mol)2=0.067713

Calculate the van Laar parameter (L21).

L21=b2RT(a1b1a2b2)2        (8)

Substitute 8.314×105m3barmolK for R, 30.05°C for T, 4.533×106m6barmol2 for a1, 9.639×105m6barmol2 for a2, 5.240×105m3mol for b1, and 8.890×105m3mol for b2 in Equation (8).

L21=b2RT(a1b1a2b2)2=8.890×105m3mol(8.314×105m3barmolK)30.05°C(4.533×106m6barmol25.240×105m3mol9.639×105m6barmol28.890×105m3mol)2=8.890×105m3mol(8.314×105m3barmolK)(30.05+273.15)K(4.533×106m6barmol25.240×105m3mol9.639×105m6barmol28.890×105m3mol)2=0.114873

Write the activity coefficients from the van Laar model for components 1 and 2.

ln[γ1]=L12(1+L12x1L21x2)2        (9)

Substitute 0.067713 for L12, 0.114873 for L21, 0.5 for x1, and 0.5 for x2.in Equation (9).

ln[γ1]=0.067713(1+(0.067713)(0.5)(0.114873)(0.5))2ln[γ1]=0.026802γ1=exp(0.026802)γ1=1.027

Write the activity coefficients from the van Laar model for components 1 and 2.

ln[γ2]=L21(1+L21x2L12x1)2        (10)

Substitute 0.067713 for L12, 0.114873 for L21, 0.5 for x1, and 0.5 for x2 in Equation (10). ln[γ2]=0.114873(1+(0.114873)(0.5)(0.067713)(0.5))2ln[γ2]=0.01579γ2=exp(0.01579)γ2=1.0159

Calculate the value of B1.

B1=(B0+ω1B1)RTc,1Pc,1=[(0.0830.422Tr,11.6)+ω1(0.1390.172Tr,14.2)]RTc,1Pc,1        (11)

Substitute 0.9834 for Tr,1, 8.314×105m3barmolK for R, 308.3 K for Tc,1, 61.14 bar for Pc,1, and 0.189 for ω1 in Equation (11).

B1=[(0.0830.422(0.9834)1.6)+0.189(0.1390.172(0.9834)4.2)][(8.314×105m3barmolK)(308.3K)]61.14bar=0.00015051m3mol

Calculate the value of B2.

B2=(B0+ω2B1)RTc,2Pc,2=[(0.0830.422Tr,21.6)+ω2(0.1390.172Tr,24.2)]RTc,2Pc,2        (12)

Substitute 0.7846 for Tr,2, 8.314×105m3barmolK for R, 386.41 K for Tc,2, 45.17 bar for Pc,2, and 0.257 for ω2 in Equation (12).

B2=[(0.0830.422(0.7846)1.6)+0.257(0.1390.172(0.7846)4.2)][(8.314×105m3barmolK)(386.41K)]45.17bar=0.00044935m3mol

Calculate the value of B12.

B12=B1B2        (13)

Substitute 0.00015051m3mol for B1 and 0.00044935m3mol for B2 in Equation (13).

B12=(0.00015051m3mol)(0.00044935m3mol)=00026m3mol

We know that,

y1+y2=1

Take up the vapor mole fraction of both the components are equal.

y1=y2=0.5

Calculate the saturation pressure for component 1(φ^1).

ln(φ^1)=PRT[B1+y22(2B12B1B2)]        (14)

Substitute 0.5 for y2, 00026m3mol for B12, 0.00015051m3mol for B1 and 0.00044935m3mol for B2, 0.0425 bar for P@30.05°C, 30.05°C for T, and 8.314×105m3barmolK for R in Equation (14).

ln(φ^1)=0.0425bar(8.314×105m3barmolK)(30.05°C)[0.00015051m3mol+[(0.5)2(2(00026m3mol)(0.00015051m3mol)(0.00044935m3mol))]]ln(φ^1)=0.0425bar(8.314×105m3barmolK)(30.05+273.15)K[0.00015051m3mol+[(0.5)2(2(00026m3mol)(0.00015051m3mol)(0.00044935m3mol))]]φ^1=1.000218

Calculate the saturation pressure for component 2(φ^2).

ln(φ^2)=PRT[B2+y12(2B12B1B2)]        (15)

Substitute 0.5 for y2, 00026m3mol for B12, 0.00015051m3mol for B1 and 0.00044935m3mol for B2, 0.0425 bar for P@30.05°C, 30.05°C for T, and 8.314×105m3barmolK for R in Equation (15).

ln(φ^2)=0.0425bar(8.314×105m3barmolK)(30.05°C)[0.00044935m3mol+[(0.5)2(2(00026m3mol)(0.00015051m3mol)(0.00044935m3mol))]]ln(φ^2)=0.0425bar(8.314×105m3barmolK)(30.05+273.15)K[0.00044935m3mol+[(0.5)2(2(00026m3mol)(0.00015051m3mol)(0.00044935m3mol))]]φ^2=0.99

Calculate the fugacity coefficient of component 1(φ^1,sat).

ln(φ^1,sat)=P1satB1RT        (16)

Substitute 30.05°C for T, 8.314×105m3barmolK for R, 7.265×1023 bar for P1sat, and 0.00015051m3mol for B1 in Equation (16).

ln(φ^1,sat)=(7.265×1023bar)(0.00015051m3mol)(8.314×105m3barmolK)(30.05°C)ln(φ^1,sat)=(7.265×1023bar)(0.00015051m3mol)(8.314×105m3barmolK)(30.05+273)Kφ^1,sat=1

Calculate the fugacity coefficient of component 2 (φ^2,sat).

ln(φ^2,sat)=P2satB2RT        (17)

Substitute 30.05°C for T, 8.314×105m3barmolK for R, 6.82 bar for P2sat, and 0.00044935m3mol for B2 in Equation (17)

ln(φ^2,sat)=(6.828bar)(0.00044935m3mol)(8.314×105m3barmolK)(30.05°C)ln(φ^2,sat)=(6.828bar)(0.00044935m3mol)(8.314×105m3barmolK)(30.05+273)Kφ^2,sat=0.885

Express the activity coefficients at the two mixture states.

γ1=y1Pφ^1x1P1satφ1satexp{V_1L(PP1sat)RT}        (18)

γ2=y2Pφ^2x2P2satφ2satexp{V_2L(PP2sat)RT}        (19)

Here, system pressure is P, vapor phase mole fraction for components 1 and 2 is y1andy2, liquid mole fraction for components 1 and 2 is x1andx2 respectively.

Use spreadsheet calculation in Equations (18) and (19) to calculate γ1 and γ2 by substituting the values of R,T,φ^1,φ^2,φ1sat,φ2sat,P1sat,P2sat,V_1L,andV_2L as in Table (2).

P (bar)x1y1γ1γ2
7.0100-1.15971297
7.80.0380.15724.50201E+231.13315852
8.50.12830.38493.56211E+230.99665029
11.750.25090.59843.93668E+231.05683929
17.750.42430.76034.51445E+231.26208752
250.56850.8375.29004E+231.64767998
32.490.69560.89056.05561E+232.08477918
39.20.80140.93786.75625E+232.2338378
47.20.90030.96277.53695E+233.28987661
54.76118.28467E+23-

Since the compositions are exceptionally close to the immaculate segment endpoints, the activity coefficients are great assessments of the "endless weakening activity coefficients for the components 1 and 2" Thus,

γ1=2.9832γ2=2.710

Calculate the 2-parameter Margules equation.

ln(γ1)=A12        (20)

Substitute 2.9832 for γ1 in Equation (20).

ln(2.9832)=A12A12=1.048

Calculate the 2-parameter Margules equation

ln(γ2)=A21        (21)

Substitute 2.710 for γ2 in Equation (21).

ln(2.710)=A21A21=0.039

Calculate the excess molar Gibbs free energy for model.

G_ERT=x1x2(A21x1+A12x2)        (22)

Calculate the excess molar Gibbs free energy for experimental.

G_ERT=x1ln[γ1]+x2ln[γ2]        (23)

Calculate the objective function value.

OBJ=1Ni=1N[(G_ERT)iModel(G_ERT)iExp(G_ERT)iExp]2        (24)

Apply spread sheet calculation the objective function value by substituting the x1,x2,A21,A12,γ1,andγ2 using Equations (22) and (24) in Equation (24).

OBJ=0.0042

The 2-parameter Margules fit for modified Raoult’s law becomes:

A12=1.373A21=0.249

Apply spreadsheet calculation to find the objective function value by substituting the values

 of x1,x2,A21,A12,γ1,andγ2 using Equations (22) and (24) in Equation (24).

OBJ=0.114

Calculate the pressure and vapor-stage composition in the accompanying way:

P=x1γ1P1sat(φ^1φ1sat)exp{V_1L(PP1sat)RT}+x2γ2P2sat(φ^2φ2sat)exp{V_2L(PP2sat)RT}        (25)

y1=x1γ1P1satP(φ^1φ1sat)exp{V_1L(PP1sat)RT}        (26)

Write the equation of bubble point.

P=γ1x1P1sat+γ2x2P2sat        (27)

Write the vapor phase mole fraction.

y1=x1γ1P1satP        (28)

Write the Raoult’s law equation.

P=x1P1sat+x2P2sat        (29)

y1=x1P1satP        (30)

Thus, solve each value of x1 from 0 to 1.

Solve Equations (25) to (30) to find two unknowns P and y1 by substituting the values of R,T,φ^1,φ^2,φ1sat,φ2sat,P1sat,P2sat,V_1L,andV_2L and Table (1) activity coefficient values of component 1 and 2 and then plot the graph of pressure versus mole fraction ethyne as in Figure (1).

Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List), Chapter 12.7, Problem 30P

In figure (1) gamma phi approach is indicated by the dark solid line and the modified Raoult’s law is shown by the light solid line and the Raoult’s law by the dashed lines. There is a benefit for treating the system as a real gas instead of as an ideal gas. But at higher pressures, the correlation for bubble point is weaker which is because of the challenge in fitting Gibbs free energy into the model.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 12 Solutions

Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)

Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Homogeneous and Heterogeneous Equilibrium - Chemical Equilibrium - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=8V9ozZSKl9E;License: Standard YouTube License, CC-BY