LL ORG CHEM
LL ORG CHEM
6th Edition
ISBN: 9781264840083
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 12C.7, Problem 18P
Interpretation Introduction

(a)

Interpretation: The number of peaks present in the given NMR signal of labeled proton is to be calculated.

Concept introduction: In NMR spectrum, peaks are known as resonances, lines or absorptions. The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. In 1HNMR all chemically equivalent protons generates one signal or one peak, whereas non-equivalent proton generates different signals. The number of peaks is calculated by the formula,

P=n+1

Interpretation Introduction

(b)

Interpretation: The number of peaks present in the given NMR signal of labeled proton is to be calculated.

Concept introduction: In NMR spectrum, peaks are known as resonances, lines or absorptions. The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. In 1HNMR all chemically equivalent protons generates one signal or one peak, whereas non-equivalent proton generates different signals. The number of peaks is calculated by the formula,

P=n+1

Interpretation Introduction

(c)

Interpretation: The number of peaks present in the given NMR signal of labeled proton is to be calculated.

Concept introduction: In NMR spectrum, peaks are known as resonances, lines or absorptions. The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. In 1HNMR all chemically equivalent protons generates one signal or one peak, whereas non-equivalent proton generates different signals. The number of peaks is calculated by the formula,

P=n+1

Interpretation Introduction

(d)

Interpretation: The number of peaks present in the given NMR signal of labeled proton is to be calculated.

Concept introduction: In NMR spectrum, peaks are known as resonances, lines or absorptions. The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. In 1HNMR all chemically equivalent protons generates one signal or one peak, whereas non-equivalent proton generates different signals. The number of peaks is calculated by the formula,

P=n+1

Blurred answer

Chapter 12C Solutions

LL ORG CHEM

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY