GEN, ORG & BIOL CHEM: CUSTOM SSC
GEN, ORG & BIOL CHEM: CUSTOM SSC
5th Edition
ISBN: 9781307274448
Author: SMITH
Publisher: MCG CUSTOM
Question
Book Icon
Chapter 13, Problem 13.48P

(a)

Interpretation Introduction

Interpretation:

The bubble point pressure for any one of the given binary systems in table 13.10 is to be calculated using NRTL equation.

Concept Introduction:

Antoine equation is used to determine the vapor pressure of any substance at the given temperature by the equation:

  lnPsat(kPa)=AB(TC)+C ......(1)

Here, A, B and C are the constants specific for a substance given in table B.2 of appendix B.

Equation 13.19 to be used for Modified Raoult’s law is:

  yiP=xiγiPisat ......(2)

The Bubble point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first bubble of vapor appears which is in equilibrium with the liquid present in the system. The equation which defines this pressure at this point is:

  PBUBL=x1γ1P1sat+x2γ2P2sat ......(3)

NRTL equations to be used are:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2] ......(4)

Here, the parameters τ12 and τ21 are calculated by the formula:

  τ12=b 12RTτ21=b 21RT ......(5)

And, G12 and G21 are calculated by the formula:

  G12=exp(ατ 12)G21=exp(ατ 21) ......(6)

Where, αb12 and b21 are the NRTL equation parameters given in table 13.10 for binary systems.

(a)

Expert Solution
Check Mark

Answer to Problem 13.48P

The bubble point pressure for 1Propanol(1)/Water(2) using NRTL equation is:

  PBUBL=31.048 kPa

Explanation of Solution

Given information:

The temperature at which the bubble point pressure is to be calculated is 60C . The composition of the liquid phase at this point is given as x1=0.3 .

NRTL equation parameters are given in Table 13.10 as shown below:

GEN, ORG & BIOL CHEM: CUSTOM SSC, Chapter 13, Problem 13.48P , additional homework tip  1

The binary system for which the bubble point pressure will be calculated is 1Propanol(1)/Water(2) at t=60C . The liquid phase composition is:

  x1=0.3x2=0.7

From table B.2 of appendix B, the Antoine equation constants for 1Propanol(1) and Water(2) are:

  A1=16.1154B1=3483.67C1=205.807A2=16.3872B2=3885.70C2=230.170

Now, use equation (1) to calculate the vapor pressure of 1Propanol(1) and Water(2) for temperature 60C as:

  lnP1sat=16.11543483.67( 60)+205.807P1sat=e( 16.1154 3483.67 ( 60 )+205.807 )=20.2750 kPalnP2sat=16.38723885.70( 60)+230.170P2sat=e( 16.3872 3885.70 ( 60 )+230.170 )=20.0070 kPa

From table 13.10, the parameters needed for 1Propanol(1) and Water(2) to be used in NRTL equation are:

  α=0.5081b12=500.40 cal/molb21=1636.57 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of τ12 and τ21 as:

  τ12=b 12RT=500.40 cal mol( 1.9859 cal molK )( 333.15 K)=0.7563τ21=b 21RT=1636.57 cal mol( 1.9859 cal molK )( 333.15 K)=2.474

Use equation (6) to calculate the values of G12 and G21 as:

  G12=exp(ατ 12)=exp(0.5081×0.7563)=0.6809G21=exp(ατ 21)=exp(0.5081×2.474)=0.2845

Now, use these values of τ12, τ21, G12 and G21 along with the given values of x1 and x2 and calculate the values of γ1 and γ2 using equations set (4) as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.7 )2[2.474 ( 0.2845 0.3+0.7( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.7+0.3( 0.6809 ) ) 2 ])=2.0186γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.3 )2[0.7563 ( 0.6809 0.7+0.3( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.3+0.7( 0.2845 ) ) 2 ])=1.3402

Calculate the bubble point pressure of the system using equation (3) as:

  PBUBL=x1γ1P1sat+x2γ2P2sat=0.3(2.0186)(20.2750)+0.7(1.3402)(20.0070)=31.048 kPa

(b)

Interpretation Introduction

Interpretation:

The dew point pressure for any one of the given binary systems in table 13.10 is to be calculated using NRTL equation.

Concept Introduction:

Equation 13.19 to be used for Modified Raoult’s law is:

  yiP=xiγiPisat ......(2)

NRTL equations to be used are:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2] ......(4)

Here, the parameters τ12 and τ21 are calculated by the formula:

  τ12=b 12RTτ21=b 21RT ......(5)

And, G12 and G21 are calculated by the formula:

  G12=exp(ατ 12)G21=exp(ατ 21) ......(6)

Where, αb12 and b21 are the NRTL equation parameters given in table 13.10 for binary systems.

The Dew point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first drop of liquid appears which is in equilibrium with the vapor present in the system at a particular temperature. The equation that defines this pressure at this point is:

  PDEW=1y1γ1P1 sat+y2γ2P2 sat ......(7)

(b)

Expert Solution
Check Mark

Answer to Problem 13.48P

The dew point pressure for 1Propanol(1)/Water(2) using NRTL equation is:

  PDEW=20.583 kPa

Explanation of Solution

Given information:

The temperature at which the dew point pressure is to be calculated is 60C . The composition of the vapor phase at this point is given as y1=0.3 .

NRTL equation parameters are given in Table 13.10 as shown below:

GEN, ORG & BIOL CHEM: CUSTOM SSC, Chapter 13, Problem 13.48P , additional homework tip  2

Use the values of P1sat, and P2sat at 60C as calculated in part (a). The vapor phase composition is:

  y1=0.3y2=0.7

From table 13.10, the parameters needed for 1Propanol(1) and Water(2) to be used in NRTL equation are:

  α=0.5081b12=500.40 cal/molb21=1636.57 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of τ12 and τ21 as:

  τ12=b 12RT=500.40 cal mol( 1.9859 cal molK )( 333.15 K)=0.7563τ21=b 21RT=1636.57 cal mol( 1.9859 cal molK )( 333.15 K)=2.474

Use equation (6) to calculate the values of G12 and G21 as:

  G12=exp(ατ 12)=exp(0.5081×0.7563)=0.6809G21=exp(ατ 21)=exp(0.5081×2.474)=0.2845

1st iteration:

Now, use these values of τ12, τ21, G12 and G21 along with the values of x1 and x2 guessed as 0.1 and 0.9 respectively. Calculate the values of γ1 and γ2 using equations set (4) as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.9 )2[2.474 ( 0.2845 0.1+0.9( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.9+0.1( 0.6809 ) ) 2 ])=5.6099γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.1 )2[0.7563 ( 0.6809 0.9+0.1( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.1+0.9( 0.2845 ) ) 2 ])=1.0611

Now, calculate the dew point pressure of the system using equation (7) as:

  PDEW=1 y 1 γ 1 P 1 sat + y 2 γ 2 P 2 sat =1 0.1 ( 5.6099 )( 20.2750 )+ 0.9 ( 1.0611 )( 20.0070 )=23.109 kPa

Apply Raoult’s law on both the components and use this dew point pressure to calculate x1 and x2 as:

  y1PDEW=x1γ1P1sat0.3(23.109)=x1(5.6099)(20.2750)x1=0.061x2=1x1x2=0.939

Now, use this calculated value of x1 and x2 to again calculate the values of γ1 and γ2 and further calculate PDEW .

2nd iteration:

Calculate the values of γ1 and γ2 using equations set (4) and calculated values of x1 and x2 from 1st iteration as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.939 )2[2.474 ( 0.2845 0.061+0.939( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.939+0.061( 0.6809 ) ) 2 ])=8.2644γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.061 )2[0.7563 ( 0.6809 0.939+0.061( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.061+0.939( 0.2845 ) ) 2 ])=1.026

Now, calculate the dew point pressure of the system using equation (7) as:

  PDEW=1 y 1 γ 1 P 1 sat + y 2 γ 2 P 2 sat =1 0.061 ( 8.2644 )( 20.2750 )+ 0.939 ( 1.026 )( 20.0070 )=21.688 kPa

Apply Raoult’s law on both the components and use this dew point pressure to calculate x1 and x2 as:

  y1PDEW=x1γ1P1sat0.3(21.688)=x1(8.2644)(20.2750)x1=0.039x2=1x1x2=0.961

3rd iteration:

Calculate the values of γ1 and γ2 using equations set (4) and calculated values of x1 and x2 from 2nd iteration as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.961 )2[2.474 ( 0.2845 0.039+0.961( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.961+0.039( 0.6809 ) ) 2 ])=10.8319γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.039 )2[0.7563 ( 0.6809 0.961+0.039( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.039+0.961( 0.2845 ) ) 2 ])=1.012

Now, calculate the dew point pressure of the system using equation (7) as:

  PDEW=1 y 1 γ 1 P 1 sat + y 2 γ 2 P 2 sat =1 0.039 ( 10.8319 )( 20.2750 )+ 0.961 ( 1.012 )( 20.0070 )=20.99 kPa

Apply Raoult’s law on both the components and use this dew point pressure to calculate x1 and x2 as:

  y1PDEW=x1γ1P1sat0.3(20.99)=x1(10.8319)(20.2750)x1=0.029x2=1x1x2=0.971

4th iteration:

Calculate the values of γ1 and γ2 using equations set (4) and calculated values of x1 and x2 from 3rd iteration as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.971 )2[2.474 ( 0.2845 0.029+0.971( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.971+0.029( 0.6809 ) ) 2 ])=12.4397γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.029 )2[0.7563 ( 0.6809 0.971+0.029( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.029+0.971( 0.2845 ) ) 2 ])=1.007

Now, calculate the dew point pressure of the system using equation (7) as:

  PDEW=1 y 1 γ 1 P 1 sat + y 2 γ 2 P 2 sat =1 0.029 ( 12.4397 )( 20.2750 )+ 0.971 ( 1.007 )( 20.0070 )=20.699 kPa

Apply Raoult’s law on both the components and use this dew point pressure to calculate x1 and x2 as:

  y1PDEW=x1γ1P1sat0.3(20.699)=x1(12.4397)(20.2750)x1=0.025x2=1x1x2=0.975

5th iteration:

Calculate the values of γ1 and γ2 using equations set (4) and calculated values of x1 and x2 from 4th iteration as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.975 )2[2.474 ( 0.2845 0.025+0.975( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.975+0.025( 0.6809 ) ) 2 ])=13.1876γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.025 )2[0.7563 ( 0.6809 0.975+0.025( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.025+0.975( 0.2845 ) ) 2 ])=1.005

Now, calculate the dew point pressure of the system using equation (7) as:

  PDEW=1 y 1 γ 1 P 1 sat + y 2 γ 2 P 2 sat =1 0.025 ( 13.1876 )( 20.2750 )+ 0.975 ( 1.005 )( 20.0070 )=20.583 kPa

Apply Raoult’s law on both the components and use this dew point pressure to calculate x1 and x2 as:

  y1PDEW=x1γ1P1sat0.3(20.583)=x1(13.1876)(20.2750)x1=0.023x2=1x1x2=0.977

Since, (x1)5th(x1)4th=0.002, this value of PDEW calculated in 5th iteration is well accepted.

Therefore,

  PDEW=20.583 kPa

(c)

Interpretation Introduction

Interpretation:

P,T flash is to be performed for any one of the given binary systems in table 13.10 using NRTL equation.

Concept Introduction:

Equation 13.19 to be used for Modified Raoult’s law is:

  yiP=xiγiPisat ......(2)

The Bubble point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first bubble of vapor appears which is in equilibrium with the liquid present in the system. The equation which defines this pressure at this point is:

  PBUBL=x1γ1P1sat+x2γ2P2sat ......(3)

The Dew point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first drop of liquid appears which is in equilibrium with the vapor present in the system at a particular temperature. The equation that defines this pressure at this point is:

  PDEW=1y1γ1P1 sat+y2γ2P2 sat ......(7)

P,T flash calculations are done to find the values of VL, yi, and xi for a system which flashes to produce a two-phase system of vapor and liquid in equilibrium.

The equation for equilibrium ratio, Ki also known as K -value is:

  Kiyixi ......(8)

Here, yi is the vapor phase mole fraction and xi is the liquid phase mole fraction of species i in the binary system in VLE.

The equations for flash calculations to be used are:

  L+V=1 ......(9)

Here, V is the total moles of vapor and L is the total moles of liquid.

In terms of Ki, the equation relating yi and zi is:

  yi=ziKi1+V(Ki1) ......(10)

Here, zi is the total mole fraction of component i in the system.

(c)

Expert Solution
Check Mark

Answer to Problem 13.48P

The result of the P,T flash calculations is:

  V=0.410L=0.590y1=0.393y2=0.607x1=0.235x2=0.765

Explanation of Solution

Given information:

The flash temperature at which the P,T flash is to be calculated is 60C . The total composition of component 1 at this point is given as z1=0.3 .

The condition for the flash pressure for this system is,

  P=12(PBUBL+PDEW)

NRTL equation parameters are given in Table 13.10 as shown below:

GEN, ORG & BIOL CHEM: CUSTOM SSC, Chapter 13, Problem 13.48P , additional homework tip  3

Use the values of P1sat, and P2sat at 60C as calculated in part (a).

To perform P,T flash calculations, first find the bubble point and dew point pressure for the binary system 1Propanol(1) and Water(2) at temperature 60C .

To calculate bubble point pressure, let

  z1=x1=0.3z2=x2=0.7

Since, the given conditions are same as in part (a), the calculated value of PBUBL as in part (a) is:

  PBUBL=31.048 kPa

To calculate dew point pressure, let

  z1=y1=0.3z2=y2=0.7

Since, the given conditions are same as in part (b), the calculated value of PDEW as in part (b) is:

  PDEW=20.583 kPa

From the given condition of the flash pressure, it is calculated as:

  P=12(P BUBL+P DEW)=12(31.048+20.583)=25.8155 kPa

Now, using the modified Raoult’s law, calculate the values of equilibrium ratio of component 1 and 2 using equations (2) and (8) as:

  Ki=yixi=γiPi satPK1=γ1P1 satP=( 2.12554)( 20.2750)25.8155=1.669K2=γ2P2 satP=( 1.02504)( 20.0070)25.8155=0.794

Now, use equation (10) and write it for both the component, 1 and 2 as shown below:

  y1=0.3( 1.669)1+V( 1.6691)y2=0.7( 0.794)1+V( 0.7941) ......(11)

Since, y1+y2=1, the above equations are solved to calculate V as:

  0.3( 1.669)1+V( 1.6691)+0.7( 0.794)1+V( 0.7941)=1V=0.410

Now, use equation (9) to calculate the value of L as:

  L+V=1L+0.410=1L=0.590

Also, use the calculated value of V in equation set (11) and find the values of y1 and y2 as:

  y1=0.3( 1.669)1+V( 1.6691)=0.3( 1.669)1+0.410( 1.6691)=0.393y2=0.7( 0.794)1+V( 0.7941)=0.7( 0.794)1+0.410( 0.7941)=0.607

Using these values and the calculated values of K1 and K2, find the values of x1 and x2 by equation (8) as:

  Ki=yixixi=yiKix1=y1K1=0.3931.669=0.235x2=y2K2=0.6070.794=0.765

The result of the P,T flash calculations is:

  V=0.410L=0.590y1=0.393y2=0.607x1=0.235x2=0.765

(d)

Interpretation Introduction

Interpretation:

The values of the azeotropic pressure and composition of the system is to be calculated if it exists for the given binary system.

Concept Introduction:

Equation 13.19 to be used for Modified Raoult’s law is:

  yiP=xiγiPisat ......(2)

NRTL equations to be used are:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2] ......(4)

Here, the parameters τ12 and τ21 are calculated by the formula:

  τ12=b 12RTτ21=b 21RT ......(5)

And, G12 and G21 are calculated by the formula:

  G12=exp(ατ 12)G21=exp(ατ 21) ......(6)

Where, αb12 and b21 are the NRTL equation parameters given in table 13.10 for binary systems.

Relative volatility is defined by,

  α12y1/x1y2/x2 ......(12)

When (α 12)x1=0>1 and (α 12)x1=1<1, there exists an azeotrope in the given system.

At the azeotropic point, α12=1 and x1=y1 .

(d)

Expert Solution
Check Mark

Answer to Problem 13.48P

The azeotropic values of pressure and composition for the binary system is calculated as:

  Paz=31.84 kPax1=y1=0.407

Explanation of Solution

Given information:

The temperature at which the azeotrope of the system may exists is 60C .

NRTL equation parameters are given in Table 13.10 as shown below:

GEN, ORG & BIOL CHEM: CUSTOM SSC, Chapter 13, Problem 13.48P , additional homework tip  4

Use the values of P1sat, and P2sat at 60C as calculated in part (a).

From table 13.10, the parameters needed for 1Propanol(1) and Water(2) to be used in NRTL equation are:

  α=0.5081b12=500.40 cal/molb21=1636.57 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of τ12 and τ21 as:

  τ12=b 12RT=500.40 cal mol( 1.9859 cal molK )( 333.15 K)=0.7563τ21=b 21RT=1636.57 cal mol( 1.9859 cal molK )( 333.15 K)=2.474

Use equation (6) to calculate the values of G12 and G21 as:

  G12=exp(ατ 12)=exp(0.5081×0.7563)=0.6809G21=exp(ατ 21)=exp(0.5081×2.474)=0.2845

Now, use these values of τ12, τ21, G12 and G21 along with the values of x1=0 and x2=1 and calculate the values of γ1 and γ2 using equations set (4) as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 1.0 )2[2.474 ( 0.2845 0.0+1.0( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 1.0+0.0( 0.6809 ) ) 2 ])=19.8651γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.0 )2[0.7563 ( 0.6809 1.0+0.0( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.0+1.0( 0.2845 ) ) 2 ])=1.00

Using equation (12) along with the modified Raoult’s law, calculate the value of relative volatility at x1=0 as:

  ( α 12)x1=0y1/x1y2/x2=γ1P1 sat/Pγ2P2 sat/P=γ1P1 satγ2P2 sat=( 19.8651)( 20.2750)( 1.00)( 20.0070)=20.131

For x1=1 and x2=0 and calculate the values of γ1 and γ2 using equations set (4) as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.0 )2[2.474 ( 0.2845 1.0+0.0( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.0+1.0( 0.6809 ) ) 2 ])=1.00γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 1.0 )2[0.7563 ( 0.6809 0.0+1.0( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 1.0+0.0( 0.2845 ) ) 2 ])=4.3066

Using equation (12) along with the modified Raoult’s law, calculate the value of relative volatility at x1=1 as:

  ( α 12)x1=1y1/x1y2/x2=γ1P1 sat/Pγ2P2 sat/P=γ1P1 satγ2P2 sat=( 1.00)( 20.2750)( 4.3066)( 20.0070)=0.235

Since (α 12)x1=0>1 and (α 12)x1=1<1, there exists an azeotrope for the binary system.

To calculate the azeotropic pressure, consider the condition α12=1 and x1=y1 .

1st iteration:

Now, use the values of x1 and x2 guessed as 0.3 and 0.7, and the values of y1 and y2 guessed as 0.3 and 0.7, respectively. Calculate the values of γ1 and γ2 using equations set (4) as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.7 )2[2.474 ( 0.2845 0.3+0.7( 0.2845 ) ) 2+ ( 0.6809 )( 0.7563 ) ( 0.7+0.3( 0.6809 ) ) 2 ])=2.0186γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.3 )2[0.7563 ( 0.6809 0.7+0.3( 0.6809 ) ) 2+ ( 0.2845 )( 2.474 ) ( 0.3+0.7( 0.2845 ) ) 2 ])=1.3402

Now, calculate the azeotropic pressure of the system as:

  Paz=x1γ1P1sat+x2γ2P2satPaz=0.3(2.0186)(20.2750)+0.7(1.3402)(20.0070)Paz=31.048 kPa

Apply Raoult’s law on both the components and use this pressure to calculate y1 and y2 as:

  y1Paz=x1γ1P1saty1(31.048)=0.3(2.0186)(20.2750)y1=0.395y2=1y1y2=0.605

Now, use this calculated value of y1 and y2 and substitute it as x1 and x2 . Again, calculate the values of γ1 and γ2 and further calculate Paz . After 10 iterations, the values of Paz, x1, and y1 obtained are:

  Paz=31.84 kPax1=y1=0.407

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

GEN, ORG & BIOL CHEM: CUSTOM SSC

Ch. 13 - A binary mixture of mole fraction z1is flashed to...Ch. 13 - Humidity, relating to the quantity of moisture in...Ch. 13 - A concentrated binary solution containing mostly...Ch. 13 - Air, even more than carbon dioxide, is inexpensive...Ch. 13 - Helium-laced gases are used as breathing media for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the system ethyl ethanoate(l)/n-heptane(2) at...Ch. 13 - A liquid mixture of cyclohexanone(1)/phenol(2) for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the acetone(l)/methanol(2) system, a vapor...Ch. 13 - The following is a rule of thumb: For a binary...Ch. 13 - A process stream contains light species 1 and...Ch. 13 - If a system exhibits VLE, at least one of the...Ch. 13 - Flash calculations are simpler for binary systems...Ch. 13 - Prob. 13.25PCh. 13 - (a) A feed containing equimolar amounts of...Ch. 13 - A binary mixture of benzene(1) and toluene(2) is...Ch. 13 - Ten (10) kmolhr-1 of hydrogen sulfide gas is...Ch. 13 - Physiological studies show the neutral comfort...Ch. 13 - Prob. 13.30PCh. 13 - Prob. 13.31PCh. 13 - Prob. 13.32PCh. 13 - If Eq. (13.24) is valid for isothermal VLE in a...Ch. 13 - Prob. 13.34PCh. 13 - The excess Gibbs energy for binary systems...Ch. 13 - For the ethanol(l )/chloroform(2) system at 50°C,...Ch. 13 - VLE data for methyl tert-butyl...Ch. 13 - Prob. 13.38PCh. 13 - Prob. 13.39PCh. 13 - Following are VLE data for the system...Ch. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.45PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Prob. 13.50PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.52PCh. 13 - The following expressions have been reported for...Ch. 13 - Possible correlating equations for In 1 in a...Ch. 13 - Prob. 13.57PCh. 13 - Binary VLE data are commonly measured at constant...Ch. 13 - Consider the following model for GE/RT of a binary...Ch. 13 - A breathalyzer measures volume-% ethanol in gases...Ch. 13 - Table 13.10 gives values of parameters for the...Ch. 13 - Prob. 13.62PCh. 13 - A single P-x1- y1data point is available for a...Ch. 13 - A single P- x1, data point is available for a...Ch. 13 - The excess Gibbs energy for the system...Ch. 13 - Prob. 13.66PCh. 13 - A system formed of methane(l) and a light oil(2)...Ch. 13 - Use Eq. (13.13) to reduce one of the following...Ch. 13 - For one of the following substances, determine...Ch. 13 - Departures from Raoult's law are primarily from...Ch. 13 - The relative volatility a12is commonly used in...Ch. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The