EBK CHEMISTRY: THE MOLECULAR NATURE OF
EBK CHEMISTRY: THE MOLECULAR NATURE OF
8th Edition
ISBN: 9781259915505
Author: SILBERBERG
Publisher: MCGRAW HILL BOOK COMPANY
Question
Book Icon
Chapter 13, Problem 13.74P
Interpretation Introduction

Interpretation:

The molality, molarity and mole fraction of NH3 is to be determined.

Concept introduction:

Molality is the measure of the concentration of solute in the solution. It is the amount of solute that is dissolved in one kilogram of the solvent. It is represented by m and its unit is moles per kilograms. The solute is the substance that is present in a smaller amount and solvent is the substance that is present in a larger amount.

The formula to calculate the molality of the solution is as follows:

Molality=amount(mol)ofsolutemass(kg)ofsolvent (1)

Molarity is defined as the number of moles of solute that are dissolved in one litre of solution. It is represented by M and its unit is mol/L.

The formula to calculate the molarity of the solution is as follows:

Molarity=amount(mol)ofsolutevolume (L)ofsolution (2)

The mole fraction is defined as the ratio of the number of moles of solute to the total number of moles in the mixture. It is represented by X.

The formula to calculate the mole fraction is as follows:

Molefraction(X)=amount(mol)ofsoluteamount(mol)ofsolute+amount(mol)ofsolvent (3)

Expert Solution & Answer
Check Mark

Answer to Problem 13.74P

The molality, molarity and mole fraction of the given solution of NH3 is 5.11m, 4.53M and 0.0843.

Explanation of Solution

The formula to calculate the molality of the aqueous solution of NH3 is as follows:

Molality=amount(mol)ofNH3mass(kg)ofH2O (4)

The formula to calculate the moles of a compound is as follows:

Moles of compound=(given massmolar mass of compound) (5)

The formula to calculate the moles of NH3 is as follows:

MolesofNH3=given mass molar mass ofNH3(mass%ofNH3100%ofsolution) (6)

Substitute 100g for the given mass, 8% for the mass percent of NH3 and 17.03g/mol for the molar mass of NH3 in equation (6).

AmountofNH3=(100gsolution)(8%NH3100%solution)(1molNH317.03gNH3)=0.469759mol

The formula to calculate the mass of H2O is as follows:

MassofH2O=(Massofsolution-MassofNH3) (7)

Substitute 100g for the mass of solution and 8g for the mass of NH3 in equation (7).

MassofH2O=(100g-8g)(1kg103g)=0.092kg

Substitute 0.469759mol for the amount of NH3 and 0.092kg for the mass of H2O in equation (4).

MolalityofNH3=(0.469759mol)(0.092kg)=5.106076m=5.11m

The formula to calculate the molarity of the aqueous solution of NH3 is as follows:

MolarityofNH3=amount(mol)ofNH3volume (L)ofsolution (8)

The formula to calculate the volume of the solution is as follows:

Volumeofsolution=Mass of solutionDensity of solution (9)

Substitute 100g for the mass of solution and 0.9651g/mL for the density of the solution in equation (9).

Volumeofsolution=(100gsolution)(1mL0.9651gsolution)(103L1mL)=0.103616 L

Substitute 0.469759mol for the amount of NH3 and 0.103616 L for the volume of solution in equation (8).

MolarityofNH3=0.469759mol0.103616 L=4.53365M=4.53M

The formula to calculate the mole fraction of NH3 is as follows:

MolefractionofNH3=amount(mol)ofNH3amount(mol)ofNH3+amount(mol)ofH2O (10)

Substitute 92g for the given mass and 18.02g/mol for the molar mass in equation (5).

AmountofH2O=(92g)(1molH2O18.02gH2O)=5.1054mol

Substitute 0.469759mol for the amount of NH3 and 5.1054mol for the amount of H2O in equation (10).

MolefractionofNH3=0.469759mol(0.469759mol)+(5.1054mol)=1.80723×103mol5.57516mol=0.084259=0.0843

Conclusion

The molality, molarity and mole fraction of the given solution of NH3 is 5.11m, 4.53M and 0.0843.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

EBK CHEMISTRY: THE MOLECULAR NATURE OF

Ch. 13.5 - Prob. 13.6AFPCh. 13.5 - Prob. 13.6BFPCh. 13.6 - Calculate the vapor pressure lowering of a...Ch. 13.6 - Prob. 13.7BFPCh. 13.6 - Prob. 13.8AFPCh. 13.6 - Prob. 13.8BFPCh. 13.6 - Prob. 13.9AFPCh. 13.6 - Prob. 13.9BFPCh. 13.6 - A solution is made by dissolving 31.2 g of...Ch. 13.6 - Prob. 13.10BFPCh. 13.7 - Prob. B13.1PCh. 13.7 - Prob. B13.2PCh. 13 - Prob. 13.1PCh. 13 - Prob. 13.2PCh. 13 - Prob. 13.3PCh. 13 - Which would you expect to be more effective as a...Ch. 13 - Prob. 13.5PCh. 13 - Prob. 13.6PCh. 13 - Prob. 13.7PCh. 13 - Prob. 13.8PCh. 13 - Prob. 13.9PCh. 13 - Prob. 13.10PCh. 13 - Prob. 13.11PCh. 13 - What is the strongest type of intermolecular force...Ch. 13 - Prob. 13.13PCh. 13 - Prob. 13.14PCh. 13 - Prob. 13.15PCh. 13 - Prob. 13.16PCh. 13 - Prob. 13.17PCh. 13 - Prob. 13.18PCh. 13 - Prob. 13.19PCh. 13 - Prob. 13.20PCh. 13 - Prob. 13.21PCh. 13 - Prob. 13.22PCh. 13 - Prob. 13.23PCh. 13 - What is the relationship between solvation and...Ch. 13 - Prob. 13.25PCh. 13 - Prob. 13.26PCh. 13 - Prob. 13.27PCh. 13 - Prob. 13.28PCh. 13 - Prob. 13.29PCh. 13 - Prob. 13.30PCh. 13 - Prob. 13.31PCh. 13 - Prob. 13.32PCh. 13 - Prob. 13.33PCh. 13 - Prob. 13.34PCh. 13 - Prob. 13.35PCh. 13 - Use the following data to calculate the combined...Ch. 13 - Use the following data to calculate the combined...Ch. 13 - State whether the entropy of the system increases...Ch. 13 - Prob. 13.39PCh. 13 - Prob. 13.40PCh. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Prob. 13.43PCh. 13 - Prob. 13.44PCh. 13 - For a saturated aqueous solution of each of the...Ch. 13 - Prob. 13.46PCh. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Prob. 13.50PCh. 13 - Prob. 13.51PCh. 13 - Prob. 13.52PCh. 13 - Prob. 13.53PCh. 13 - Prob. 13.54PCh. 13 - Prob. 13.55PCh. 13 - Calculate the molarity of each aqueous...Ch. 13 - Calculate the molarity of each aqueous...Ch. 13 - Prob. 13.58PCh. 13 - Calculate the molarity of each aqueous...Ch. 13 - How would you prepare the following aqueous...Ch. 13 - Prob. 13.61PCh. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - Prob. 13.65PCh. 13 - Prob. 13.66PCh. 13 - Prob. 13.67PCh. 13 - Prob. 13.68PCh. 13 - Prob. 13.69PCh. 13 - Prob. 13.70PCh. 13 - Prob. 13.71PCh. 13 - Prob. 13.72PCh. 13 - Prob. 13.73PCh. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76PCh. 13 - Prob. 13.77PCh. 13 - Prob. 13.78PCh. 13 - Prob. 13.79PCh. 13 - Prob. 13.80PCh. 13 - Prob. 13.81PCh. 13 - What are the most important differences between...Ch. 13 - Prob. 13.83PCh. 13 - Prob. 13.84PCh. 13 - Prob. 13.85PCh. 13 - Prob. 13.86PCh. 13 - Prob. 13.87PCh. 13 - Prob. 13.88PCh. 13 - Classify each substance as a strong electrolyte,...Ch. 13 - Prob. 13.90PCh. 13 - Prob. 13.91PCh. 13 - Which solution has the lower freezing point? 11.0...Ch. 13 - Prob. 13.93PCh. 13 - Prob. 13.94PCh. 13 - Prob. 13.95PCh. 13 - Prob. 13.96PCh. 13 - Prob. 13.97PCh. 13 - Prob. 13.98PCh. 13 - Prob. 13.99PCh. 13 - The boiling point of ethanol (C2H5OH) is 78.5°C....Ch. 13 - Prob. 13.101PCh. 13 - Prob. 13.102PCh. 13 - Prob. 13.103PCh. 13 - Prob. 13.104PCh. 13 - Prob. 13.105PCh. 13 - Prob. 13.106PCh. 13 - Prob. 13.107PCh. 13 - Prob. 13.108PCh. 13 - Prob. 13.109PCh. 13 - Prob. 13.110PCh. 13 - Prob. 13.111PCh. 13 - In a study designed to prepare new...Ch. 13 - The U.S. Food and Drug Administration lists...Ch. 13 - Prob. 13.114PCh. 13 - Prob. 13.115PCh. 13 - Prob. 13.116PCh. 13 - In a movie theater, you can see the beam of...Ch. 13 - Prob. 13.118PCh. 13 - Prob. 13.119PCh. 13 - Prob. 13.120PCh. 13 - Prob. 13.121PCh. 13 - Gold occurs in seawater at an average...Ch. 13 - Prob. 13.123PCh. 13 - Prob. 13.124PCh. 13 - Prob. 13.125PCh. 13 - Prob. 13.126PCh. 13 - Pyridine (right) is an essential portion of many...Ch. 13 - Prob. 13.128PCh. 13 - Prob. 13.129PCh. 13 - Prob. 13.130PCh. 13 - Prob. 13.131PCh. 13 - Prob. 13.132PCh. 13 - Prob. 13.133PCh. 13 - Prob. 13.134PCh. 13 - Prob. 13.135PCh. 13 - Prob. 13.136PCh. 13 - Prob. 13.137PCh. 13 - Prob. 13.138PCh. 13 - Prob. 13.139PCh. 13 - Prob. 13.140PCh. 13 - Prob. 13.141PCh. 13 - Prob. 13.142PCh. 13 - Prob. 13.143PCh. 13 - The release of volatile organic compounds into the...Ch. 13 - Although other solvents are available,...Ch. 13 - Prob. 13.146PCh. 13 - Prob. 13.147PCh. 13 - Prob. 13.148PCh. 13 - Prob. 13.149PCh. 13 - Prob. 13.150PCh. 13 - Prob. 13.151PCh. 13 - Suppose coal-fired power plants used water in...Ch. 13 - Urea is a white crystalline solid used as a...Ch. 13 - Prob. 13.154PCh. 13 - Prob. 13.155PCh. 13 - Prob. 13.156PCh. 13 - Prob. 13.157PCh. 13 - Prob. 13.158PCh. 13 - Prob. 13.159PCh. 13 - Prob. 13.160PCh. 13 - Prob. 13.161PCh. 13 - Prob. 13.162PCh. 13 - Figure 12.11 shows the phase changes of pure...Ch. 13 - KNO3, KClO3, KCl, and NaCl are recrystallized as...Ch. 13 - Prob. 13.165PCh. 13 - Prob. 13.166PCh. 13 - Prob. 13.167P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY