ALEKS 360-ACCESS (18 WEEKS)
ALEKS 360-ACCESS (18 WEEKS)
4th Edition
ISBN: 9781260996753
Author: Burdge
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 36QP
Interpretation Introduction

Interpretation: The amount of nitrogen gas released in litres is to be calculated.

Concept introduction:

The solubility of gas depends upon the pressure of a gas.

The relation between solubility and pressure of a gas is expressed as follows:

c=kP

Here, P is the pressure of the gas, k is the henry’s constant, and c is concentration of gas.

Expert Solution & Answer
Check Mark

Answer to Problem 36QP

Solution: 0.28 L

Explanation of Solution

Given: The solubility of N2

in blood is 5.6×104 mol/L.

The total volume of blood in body is 5.0 L.

In liquid, the solubility of a gas is directly proportional to the pressure of the gas, which is expressed as follows:

c=kP …… (1)

Here, k is the Henry’s law constant, P is the pressure, and c is the molar concentration of gas.

Substitute 5.6×104 mol/L

for c and 0.80 atm

for P in equation (1) as follows:

5.6×104 mol/L=k(0.80 atm)k=(5.6×104 mol/L)(0.80 atm)=7.0×104 mol/Latm

So, the Henry’s law constant is 7.0×104 mol/Latm.

At 4.0 atm, the concentration of nitrogen in blood is calculated as follows:

Substitute 7.0×104 mol/Latm

for k and 4.0 atm

for P in equation (1) as follows:

c=(7.0×104 mol/Latm)(4.0 atm)=2.8×103 mol/L

So, the concentration of nitrogen in blood is 2.8×103 mol/L.

At 0.80 atm,

The number of moles of nitrogen in blood is given as follows:

Moles N2=molarity×liter of solution …… (2)

Substitute 5.6×104 mol/L

for molarity

and 5.0 L

for liter of  solution

in equation (2) as follows:

Moles N2=(5.6×104 mol/L)×(5.0 L)=2.8×103 mol

At 4.0 atm,

The number of moles of nitrogen in blood is given as follows:

Moles N2=molarity×liter of solution …… (3)

Substitute 2.8×103 mol/L

for molarity

and 5.0 L

for liter of solution

in equation (3) as follows:

Moles N2=(2.8×103 mol/L)×(5.0 L)=1.4×102 mol

The amount of nitrogen released in number of moles is calculated as follows:

Moles N2=(1.4×102 mol)(2.8×103 mol)=1.1×102 mol

The ideal gas equation is represented as follows:

PV=nRT …… (4)

Here, P

is the pressure, V

is the volume, n

is the number of moles of nitrogen, R

is the gas constant, and T

is the temperature.

T(K)=T(oC)+273=37+273=310 K

Substitute 1.1×102 mol

for n, 310 K

for T, 0.0821 L.atm/mol.K

for R, and 1.0 atm

for P

in equation (4) as follows:

(1.0 atm)V=(1.1×102 mol)(0.0821 L.atm/mol.K)(310 K)V=(1.1×102 mol)(0.0821 L.atm/mol.K)(310 K)(1.0 atm)=0.28 L

Conclusion

The amount of nitrogen gas released in litres is 0.28 L.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

ALEKS 360-ACCESS (18 WEEKS)

Ch. 13.3 - Practice Problem CONCEPTUALIZE The diagrams...Ch. 13.3 - Prob. 1CPCh. 13.3 - What is the molality of a solution prepared by...Ch. 13.3 - Prob. 3CPCh. 13.3 - Prob. 4CPCh. 13.4 - Practice ProblemATTEMPT Calculate the...Ch. 13.4 - Prob. 1PPBCh. 13.4 - Practice Problem CONCEPTUALIZE The first diagram...Ch. 13.4 - The solubility of N2 in water at 25°C and an N 2...Ch. 13.4 - Calculate the molar concentration of O 2 in water...Ch. 13.5 - Practice ProblemATTEMPT Calculate the vapor...Ch. 13.5 - Prob. 1PPBCh. 13.5 - Practice ProblemCONCEPTUALIZE The diagrams...Ch. 13.5 - 13.5.1 A solution contains 75.0 g of glucose...Ch. 13.5 - Determine the boiling point and the freezing point...Ch. 13.5 - 13.5.3 Calculate the osmotic pressure of a...Ch. 13.5 - 13.5.4 A 1.00-m solution of has a freezing point...Ch. 13.6 - Prob. 1PPACh. 13.6 - Prob. 1PPBCh. 13.6 - Practice Problem CONCEPTUALIZE The diagrams...Ch. 13.6 - 13.6.1 A solution made by dissolving 14.2 g of...Ch. 13.6 - Prob. 2CPCh. 13.7 - Practice ProblemATTEMPT The freezing-point...Ch. 13.7 - Practice ProblemBUILD Using the experimental van't...Ch. 13.7 - Practice Problem CONCEPTUALIZE The diagram...Ch. 13.8 - Practice ProblemATTEMPT Determine the osmotic...Ch. 13.8 - Practice Problem BUILD Determine the...Ch. 13.8 - Practice Problem CONCEPTUALIZE The first diagram...Ch. 13.9 - Practice Problem ATTEMPT Calculate the molar mass...Ch. 13.9 - Practice Problem BUILD What mass of naphthalene...Ch. 13.9 - Practice Problem CONCEPTUALIZE The first diagram...Ch. 13.10 - Practice Problem ATTEMPT A solution made by...Ch. 13.10 - Practice Problem BUILD What mass of insulin must...Ch. 13.10 - Practice ProblemCONCEPTUALIZE The first diagram...Ch. 13.11 - Practice Problem ATTEMPT An aqueous solution that...Ch. 13.11 - Practice Problem BUILD An aqueous solution that is...Ch. 13.11 - Practice Problem CONCEPTUALIZE The diagrams...Ch. 13 - Which of the following processes is accompanied by...Ch. 13 - 13.2 For each of the processes depicted here,...Ch. 13 - 13.3 For each of the processes depicted here,...Ch. 13 - Prob. 4KSPCh. 13 - Describe and give examples of an unsaturated...Ch. 13 - Prob. 2QPCh. 13 - Prob. 3QPCh. 13 - Prob. 4QPCh. 13 - Prob. 5QPCh. 13 - As you know, some solution processes are...Ch. 13 - Prob. 7QPCh. 13 - 13.8 Describe the factors that affect the...Ch. 13 - Prob. 9QPCh. 13 - Prob. 10QPCh. 13 - Prob. 11QPCh. 13 - Prob. 12QPCh. 13 - Prob. 13QPCh. 13 - Prob. 14QPCh. 13 - Prob. 15QPCh. 13 - Prob. 16QPCh. 13 - Prob. 17QPCh. 13 - Prob. 18QPCh. 13 - Prob. 19QPCh. 13 - Prob. 20QPCh. 13 - 13.21 The alcohol content of hard liquor is...Ch. 13 - Prob. 22QPCh. 13 - Prob. 23QPCh. 13 - 13.24 The density of an aqueous solution...Ch. 13 - Prob. 25QPCh. 13 - Prob. 26QPCh. 13 - Prob. 27QPCh. 13 - What is thermal pollution? Why is it harmful to...Ch. 13 - Prob. 29QPCh. 13 - A student is observing two beakers of water. One...Ch. 13 - Prob. 31QPCh. 13 - Prob. 32QPCh. 13 - The solubility of KNO 3 is 155 g per 100 g of...Ch. 13 - Prob. 34QPCh. 13 - 13.35 The solubility of in water at What is its...Ch. 13 - Prob. 36QPCh. 13 - Prob. 37QPCh. 13 - Prob. 38QPCh. 13 - Prob. 39QPCh. 13 - Prob. 40QPCh. 13 - Prob. 41QPCh. 13 - Prob. 42QPCh. 13 - Prob. 43QPCh. 13 - Prob. 44QPCh. 13 - Prob. 45QPCh. 13 - 13.46 Write the equations relating boiling-point...Ch. 13 - Prob. 47QPCh. 13 - Prob. 48QPCh. 13 - Prob. 49QPCh. 13 - Prob. 50QPCh. 13 - Prob. 51QPCh. 13 - Prob. 52QPCh. 13 - Prob. 53QPCh. 13 - What are ion pairs? What effect does ion-pair...Ch. 13 - Prob. 55QPCh. 13 - Prob. 56QPCh. 13 - 13.57 A solution is prepared by dissolving 396 g...Ch. 13 - Prob. 58QPCh. 13 - Prob. 59QPCh. 13 - Prob. 60QPCh. 13 - Prob. 61QPCh. 13 - Prob. 62QPCh. 13 - Prob. 63QPCh. 13 - 13.64 How many liters of the antifreeze ethylene...Ch. 13 - Prob. 65QPCh. 13 - Prob. 66QPCh. 13 - Prob. 67QPCh. 13 - Prob. 68QPCh. 13 - 13.69 Both and are used to melt ice on roads and...Ch. 13 - Prob. 70QPCh. 13 - Prob. 71QPCh. 13 - Prob. 72QPCh. 13 - Prob. 73QPCh. 13 - Calculate the difference in osmotic pressure (in...Ch. 13 - 13.75 Which of the following aqueous solutions has...Ch. 13 - Prob. 76QPCh. 13 - 13.77 Arrange the following solutions in order of...Ch. 13 - Prob. 78QPCh. 13 - Indicate which compound in each of the following...Ch. 13 - Prob. 80QPCh. 13 - Prob. 81QPCh. 13 - Prob. 82QPCh. 13 - Prob. 83QPCh. 13 - The elemental analysis of an organic solid...Ch. 13 - 13.85 A solution of 2.50 g of a compound having...Ch. 13 - 13.86 The molar mass of benzoic acid determined...Ch. 13 - 13.87 A solution containing 0.8330 g of a polymer...Ch. 13 - Prob. 88QPCh. 13 - A solution of 6.85 g of a carbohydrate in 100.0 g...Ch. 13 - Prob. 90QPCh. 13 - Prob. 91QPCh. 13 - Prob. 92QPCh. 13 - Prob. 93QPCh. 13 - Prob. 94QPCh. 13 - Prob. 95APCh. 13 - Prob. 96APCh. 13 - 13.97 Acetic acid is a polar molecule and can form...Ch. 13 - Prob. 98APCh. 13 - Prob. 99APCh. 13 - Prob. 100APCh. 13 - Prob. 101APCh. 13 - Prob. 102APCh. 13 - Prob. 103APCh. 13 - Prob. 104APCh. 13 - Prob. 105APCh. 13 - A solution of 1.00 g of anhydrous aluminum...Ch. 13 - Explain why reverse osmosis is (theoretically)...Ch. 13 - A 1.32-g sample of a mixture of cyclohexane ( C 6...Ch. 13 - Prob. 109APCh. 13 - Prob. 110APCh. 13 - Prob. 111APCh. 13 - Prob. 112APCh. 13 - Prob. 113APCh. 13 - Prob. 114APCh. 13 - Prob. 115APCh. 13 - Iodine ( I 2 ) is only sparingly soluble in water...Ch. 13 - Concentrated hydrochloric acid is usually...Ch. 13 - Explain each of the following statements: (a) The...Ch. 13 - A mixture of NaCl and sucrose ( C 12 H 22 O 12 )...Ch. 13 - Prob. 120APCh. 13 - At 27°C, the vapor pressure of pure water is 23.76...Ch. 13 - A nonvolatile organic compound Z was used to make...Ch. 13 - Prob. 123APCh. 13 - Prob. 124APCh. 13 - Prob. 125APCh. 13 - Prob. 126APCh. 13 - Prob. 127APCh. 13 - Prob. 128APCh. 13 - Prob. 129APCh. 13 - Prob. 130APCh. 13 - Prob. 131APCh. 13 - Consider the three mercury manometers shown in the...Ch. 13 - Prob. 133APCh. 13 - Prob. 134APCh. 13 - Prob. 135APCh. 13 - 13.136 In the apparatus shown, what will happen if...Ch. 13 - Prob. 137APCh. 13 - Prob. 138APCh. 13 - Lysozyme is an enzyme that cleaves bacterial cell...Ch. 13 - Prob. 140APCh. 13 - Prob. 141APCh. 13 - Prob. 142APCh. 13 - Prob. 143APCh. 13 - Prob. 144APCh. 13 - Prob. 145APCh. 13 - What masses of sodium chloride, magnesium...Ch. 13 - Prob. 147APCh. 13 - Prob. 148APCh. 13 - Prob. 149APCh. 13 - Hemoglobin, the oxygen-transport protein, binds...Ch. 13 - Prob. 151APCh. 13 - 13.152 The vapor pressure of ethanol and the...Ch. 13 - Prob. 153APCh. 13 - A mixture of two volatile liquids is said to be...Ch. 13 - A mixture of two volatile liquids is said to be...Ch. 13 - Prob. 3SEPPCh. 13 - Prob. 4SEPP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY