Generl Chem Looself&mod Mst/et&stdy Crd Pkg, 11/e
Generl Chem Looself&mod Mst/et&stdy Crd Pkg, 11/e
1st Edition
ISBN: 9780134646534
Author: Petrucci
Publisher: PEARSON
Question
Book Icon
Chapter 13, Problem 58E
Interpretation Introduction

(a)

Interpretation:

Calculate the value of equilibrium constant for dissolution of AgBr which is a sparingly soluble solute with the help of given thermodynamic data.

Concept introduction:

Sparingly soluble salts form their respective ions in their solutions. The dissolution process is just opposite to the precipitation reaction. The standard free energy change can be calculated with the help of Gibb’s energy for the reactant and products. The mathematical expression of Gibb’s energy can be written as:

ΔrG° =  ΔrG°(product) - ΔrG°(reactant)

Kp or Kc are the equilibrium constants for the reaction which are ratio of gaseous and aqueous products and reactant molecules. The relation between equilibrium constant and ΔrG° can be written as:

ΔrG° = - 2.303 RT log K

Here:

  • R = 8.314 J / mol .K
  • T = temperature in Kelvin

Interpretation Introduction

(b)

Interpretation:

Calculate the value of equilibrium constant for dissolution of CaSO4(s) which is a sparingly soluble solute with the help of given thermodynamic data.

Concept introduction:

Sparingly soluble salts form their respective ions in their solutions. The dissolution process is just opposite to the precipitation reaction. The standard free energy change can be calculated with the help of Gibb’s energy for the reactant and products. The mathematical expression of Gibb’s energy can be written as:

ΔrG° =  ΔrG°(product) - ΔrG°(reactant)

Kp or Kc are the equilibrium constants for the reaction which are ratio of gaseous and aqueous products and reactant molecules. The relation between equilibrium constant and ΔrG° can be written as:

ΔrG° = - 2.303 RT log K

Here:

  • R = 8.314 J / mol .K
  • T = temperature in Kelvin

Interpretation Introduction

(c)

Interpretation:

Calculate the value of equilibrium constant for dissolution of Fe(OH)3(s) which is a sparingly soluble solute with the help of given thermodynamic data.

Concept introduction:

Sparingly soluble salts form their respective ions in their solutions. The dissolution process is just opposite to the precipitation reaction. The standard free energy change can be calculated with the help of Gibb’s energy for the reactant and products. The mathematical expression of Gibb’s energy can be written as:

ΔrG° =  ΔrG°(product) - ΔrG°(reactant)

Kp or Kc are the equilibrium constants for the reaction which are ratio of gaseous and aqueous products and reactant molecules. The relation between equilibrium constant and ΔrG° can be written as:

ΔrG° = - 2.303 RT log K

Here:

  • R = 8.314 J / mol .K
  • T = temperature in Kelvin

Blurred answer
Students have asked these similar questions
The standard reaction Gibbs energy for the reactionH2(g) + (1)/(2)O2(g) → H2O(I) is -237.13 kJ mol-1 at 25 °c. Determine the equilibrium constant in terms of concentration, Kc, at this temperature.
Thermodynamic data can be used to predict the solubilities of compounds that would be very difficult to measure directly. Calculate the solubility of mercury(ll) chloride in water at 25 °C from standard Gibbs energies of formation.
Write the expression for the solubility constants of thefollowing compounds: (a) Agl, (b) Hg2S, (c) Fe(OH)3, (d) Ag2CrO4.

Chapter 13 Solutions

Generl Chem Looself&mod Mst/et&stdy Crd Pkg, 11/e

Ch. 13 - Without performing any calculations or using data...Ch. 13 - By analogy to tH and tG how would you would you...Ch. 13 - Calculate the entropy change, S , for the...Ch. 13 - Calculate the entropy change, S , for the...Ch. 13 - IN Example 13-3, we dealt with vipH and vipH for...Ch. 13 - Pentane is one of the most volatile of the...Ch. 13 - Prob. 17ECh. 13 - Estimate the normal boiling point of bromine. Br2,...Ch. 13 - Prob. 19ECh. 13 - Refer to Figure 12-28 and equation (13.13) Which...Ch. 13 - Which of the following changes m a thermodynamic...Ch. 13 - If a reaction can be carried out only because of...Ch. 13 - Indicate which of the four cases in Table 13.3...Ch. 13 - Indicate which of the four cases in Table 13....Ch. 13 - For the mixing of ideal gases (see Figure 13-3),...Ch. 13 - In Chapter 14,, we will see that, for the...Ch. 13 - Explain why (a) some exothermic reactions do not...Ch. 13 - Explain why you would expect a reaction of the...Ch. 13 - From the data given in the following table,...Ch. 13 - Use data from Appendix D to determine values of tG...Ch. 13 - At 298 K, for the reaction...Ch. 13 - At 298 K, for the reaction...Ch. 13 - The following tG values are given for 25C ....Ch. 13 - The following tG values are given for 25C ....Ch. 13 - Write an equation for the combustion of one mole...Ch. 13 - Use molar entropies from Appendix D, together with...Ch. 13 - Assess the feasibility of the reaction...Ch. 13 - Prob. 38ECh. 13 - For each of the following reactions, write down...Ch. 13 - H2(g) can be prepared by passing steam over hot...Ch. 13 - In the synthesis of gasesous methanol from carbon...Ch. 13 - Prob. 42ECh. 13 - Use data from Appendix D to determine K at 298 K...Ch. 13 - Use data from Appendix D to establish for the...Ch. 13 - Use data from Appendix D to determine value at 298...Ch. 13 - Prob. 46ECh. 13 - Use thermodynamic data at 298 K to decide in with...Ch. 13 - Use thermodynamic data at 298 K to decide m which...Ch. 13 - For the reaction below, tG=27.07kJmol1 at 298 K....Ch. 13 - For the reaction below, tG=29.05kJmol1 at 298 K....Ch. 13 - For the reaction 2NO(g)+O2(g)2NO2(g) all but one...Ch. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - For the reaction 2SO2(g)+O2(g)2SO2(g),Kz=2.8102M1...Ch. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - To establish the law of conservation of mass,...Ch. 13 - Currently, CO2 is being studied as a source of...Ch. 13 - Prob. 61ECh. 13 - A possible reaction for converting methanol to...Ch. 13 - What must be the temperature W the following...Ch. 13 - Prob. 64ECh. 13 - The synthesis of ammonia by the Haber process...Ch. 13 - Use data from Appendix D to determine (a) tH,tS ,...Ch. 13 - Prob. 67ECh. 13 - The blowing equilibrium constants have been...Ch. 13 - For the reaction N 2 O 4 ( g ) 2N O 2 ( g ) , H e...Ch. 13 - Prob. 70ECh. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Titanium is obtained by the reduction of TiCl4(l)...Ch. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - Prob. 76ECh. 13 - Prob. 77IAECh. 13 - Prob. 78IAECh. 13 - Consider the following hypothetical process in...Ch. 13 - One mole of argon gas, Ar(g), undergoes a change...Ch. 13 - Prob. 81IAECh. 13 - Consider the vaporization of water: H2O(l)H2O(g)...Ch. 13 - Prob. 83IAECh. 13 - Prob. 84IAECh. 13 - The following table shows the enthalpies end Gibbs...Ch. 13 - Prob. 86IAECh. 13 - Prob. 87IAECh. 13 - Prob. 88IAECh. 13 - Prob. 89IAECh. 13 - Prob. 90IAECh. 13 - Prob. 91IAECh. 13 - Prob. 92IAECh. 13 - Prob. 93IAECh. 13 - Prob. 94IAECh. 13 - Prob. 95IAECh. 13 - Use the following data to estimate,...Ch. 13 - Prob. 97IAECh. 13 - Prob. 98IAECh. 13 - Prob. 99IAECh. 13 - Prob. 100FPCh. 13 - The graph shows how shows how tG varies with...Ch. 13 - Prob. 102FPCh. 13 - Prob. 103FPCh. 13 - Prob. 104FPCh. 13 - Prob. 105SAECh. 13 - Briefly describe each of the following ideas,...Ch. 13 - Prob. 107SAECh. 13 - Prob. 108SAECh. 13 - Prob. 109SAECh. 13 - The reaction, 2Cl2O(g)2Cl2(g)+O2(g)tH=161kJ , is...Ch. 13 - Prob. 111SAECh. 13 - Prob. 112SAECh. 13 - Prob. 113SAECh. 13 - Prob. 114SAECh. 13 - Prob. 115SAECh. 13 - Prob. 116SAECh. 13 - Which of the following graphs of Gibbs energy...Ch. 13 - At room temperature and normal atmospheric...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning