Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 13, Problem 72PQ

A solid sphere and a hollow cylinder of the same mass and radius have a rolling race down an incline as in Example 13.9 (page 372). They start at rest on an incline at a height h above a horizontal plane. The race then continues along the horizontal plane. The coefficient of rolling friction between each rolling object and the surface is the same. Which object rolls the farthest? (Justify your answer with an algebraic expression.)

72. Conservation of energy provides a very simple approach to this problem. Each object starts at rest on the incline, and each object stops on the horizontal surface. Along the way there is an increase in thermal energy between the surface and the object. Let’s include the Earth, the rolling object, and the surface in the system. We set the reference configuration to the horizontal surface. We can create an energy bar chart as we’ve done

Chapter 13 - Rotation II: A Conservation Approach                    13-44

previously to see that the initial gravitational potential energy is eventually dissipated as thermal energy as the object rolls a total distance S.

U g i = Δ E t h

m g h = μ r F N S

S = m g h μ r F N

Each object has the same mass m, is released from the same height h, and has the same coefficient of rolling friction μ r with the surface. The normal force exerted by the surfaces on the each object is also the same since the objects have the same mass. So, S is the same for both objects. In other_words, they travel the same distance from the starting point. This result may be surprising, but it is not a race in the traditional sense. We didn’t ask which object arrived at the finish line first. Instead, we asked where the finish line is. The sphere gets there sooner because it has a small rotational inertia, so it rolls down the incline at a higher speed.

Chapter 13, Problem 72PQ, A solid sphere and a hollow cylinder of the same mass and radius have a rolling race down an incline

Figure P13.72ANS

Blurred answer
Students have asked these similar questions
A uniform solid sphere having mass M = 85.0 g and a radius R = 0.70 m rolls on a horizontal surface and then rolls up an incline at an angle of 60.0º. At the bottom of the incline, the sphere's center of mass has a translational speed of 5.8 m/s. If the frictional losses are negligible, how far does the sphere travel up along the incline?Can you write it out on paper? I'm having a hard time understanding the problem when it is typed out.
A uniform solid sphere having mass M = 85.0 g and a radius R = 0.70 m rolls on a horizontal surface and then rolls up an incline at an angle of 60.0º. At the bottom of the incline, the sphere's center of mass has a translational speed of 5.8 m/s. If the frictional losses are negligible, how far does the sphere travel up along the incline?
A solid cylinder used for smoothing concrete is rolling without slipping along a horizontal surface with a speed of 5.1 m/s. The cylinder has a mass m=10.3 kg, radius R=0.68 m, and moment of inertia I=(1/2)mR2. You bring the cylinder to rest by exerting a constant horizontal force . If the cylinder does not slip as you bring it to rest, what is the work done by your force, using only the cylinder as the system?

Chapter 13 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 13 - Rotational Inertia Problems 5 and 6 are paired. 5....Ch. 13 - A 12.0-kg solid sphere of radius 1.50 m is being...Ch. 13 - A figure skater clasps her hands above her head as...Ch. 13 - A solid sphere of mass M and radius Ris rotating...Ch. 13 - Suppose a disk having massMtot and radius R is...Ch. 13 - Problems 11 and 12 are paired. A thin disk of...Ch. 13 - Given the disk and density in Problem 11, derive...Ch. 13 - A large stone disk is viewed from above and is...Ch. 13 - Prob. 14PQCh. 13 - A uniform disk of mass M = 3.00 kg and radius r =...Ch. 13 - Prob. 16PQCh. 13 - Prob. 17PQCh. 13 - The system shown in Figure P13.18 consisting of...Ch. 13 - A 10.0-kg disk of radius 2.0 m rotates from rest...Ch. 13 - Prob. 20PQCh. 13 - Prob. 21PQCh. 13 - In Problem 21, what fraction of the kinetic energy...Ch. 13 - Prob. 23PQCh. 13 - Prob. 24PQCh. 13 - Prob. 25PQCh. 13 - A student amuses herself byspinning her pen around...Ch. 13 - The motion of spinning a hula hoop around one's...Ch. 13 - Prob. 28PQCh. 13 - Prob. 29PQCh. 13 - Prob. 30PQCh. 13 - Sophia is playing with a set of wooden toys,...Ch. 13 - Prob. 32PQCh. 13 - A spring with spring constant 25 N/m is compressed...Ch. 13 - Prob. 34PQCh. 13 - Prob. 35PQCh. 13 - Prob. 36PQCh. 13 - Prob. 37PQCh. 13 - Prob. 38PQCh. 13 - A parent exerts a torque on a merry-go-round at a...Ch. 13 - Prob. 40PQCh. 13 - Today, waterwheels are not often used to grind...Ch. 13 - Prob. 42PQCh. 13 - A buzzard (m = 9.29 kg) is flying in circular...Ch. 13 - An object of mass M isthrown with a velocity v0 at...Ch. 13 - A thin rod of length 2.65 m and mass 13.7 kg is...Ch. 13 - A thin rod of length 2.65 m and mass 13.7 kg is...Ch. 13 - Prob. 47PQCh. 13 - Two particles of mass m1 = 2.00 kgand m2 = 5.00 kg...Ch. 13 - A turntable (disk) of radius r = 26.0 cm and...Ch. 13 - CHECK and THINK Our results give us a way to think...Ch. 13 - Prob. 51PQCh. 13 - Prob. 52PQCh. 13 - Two children (m = 30.0 kg each) stand opposite...Ch. 13 - A disk of mass m1 is rotating freely with constant...Ch. 13 - Prob. 55PQCh. 13 - Prob. 56PQCh. 13 - The angular momentum of a sphere is given by...Ch. 13 - Prob. 58PQCh. 13 - Prob. 59PQCh. 13 - Prob. 60PQCh. 13 - Prob. 61PQCh. 13 - Prob. 62PQCh. 13 - A uniform cylinder of radius r = 10.0 cm and mass...Ch. 13 - Prob. 64PQCh. 13 - A thin, spherical shell of mass m and radius R...Ch. 13 - To give a pet hamster exercise, some people put...Ch. 13 - Prob. 67PQCh. 13 - Prob. 68PQCh. 13 - The velocity of a particle of mass m = 2.00 kg is...Ch. 13 - A ball of mass M = 5.00 kg and radius r = 5.00 cm...Ch. 13 - A long, thin rod of mass m = 5.00 kg and length =...Ch. 13 - A solid sphere and a hollow cylinder of the same...Ch. 13 - A uniform disk of mass m = 10.0 kg and radius r =...Ch. 13 - When a person jumps off a diving platform, she...Ch. 13 - One end of a massless rigid rod of length is...Ch. 13 - A uniform solid sphere of mass m and radius r is...Ch. 13 - Prob. 77PQCh. 13 - A cam of mass M is in the shape of a circular disk...Ch. 13 - Prob. 79PQCh. 13 - Consider the downhill race in Example 13.9 (page...Ch. 13 - Prob. 81PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY