Package: General Chemistry with Connect 2-year Access Card
Package: General Chemistry with Connect 2-year Access Card
7th Edition
ISBN: 9781259680458
Author: Raymond Chang Dr.
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 14, Problem 14.115SP
Interpretation Introduction

Interpretation:

The initial rate of the given reaction at the given temperature has to be calculated.

Concept introduction:

Rate of the reaction is the change in the concentration of reactant or a product with time. It can be varied in accordance with temperature, pressure, concentration, presence of catalyst, surface area

Rate equation for the general reaction A+BProduct is,

Rate=krateconstat[A][B]

Rate constants are independent of concentration but depend on other factors, most notably temperature.

The reaction with the faster rate will have the larger rate constant.

Order of a reaction:  The sum of exponents of the concentrations in the rate law for the reaction is said to be order of a reaction.

The partial pressure of a gas in a mixture can be expressed as,

PA=XAPTotalPAPartialpressureofgasAXAMolefractionofgasAPTotalTotalpressureofmixture

The ideal gas Law equation is,

PV=nRTPPressureVVolumenNumberofmolesRIdealgasconstantTTemperature

Expert Solution & Answer
Check Mark

Answer to Problem 14.115SP

Initial rate of the given reaction is 2.6×10-4M/s

Explanation of Solution

Given,

Gas mixture containing CH3 fragments, C2H6 molecules, and an inert gas (He) was prepared at 600K with a total pressure of 5.42atm.

The elementary reaction is,

CH3+C2H6CH4+C2H5

This reaction follows second order kinetics, with a rate constant of 3.0×104/M.s .

Given mole fractions of CH3 and C2H6 are 0.00093and0.00077 respectively,

The initial rate of the reaction at 600K temperature can be determined as follows,

Rate law for the given reaction is,

Rate=k[CH3][C2H6]

Rate constant value for the given reaction is 3.0×104/M.s. If the concentration of reactants were known it is easy to find out the initial rate of the reaction.

Using mole fraction value and total partial pressure, partial pressure of each reactant in the reaction can be calculated as follows,

PCH3=XCH3PT=(0.00093)(5.42atm)=0.0050atmPC2H6=XC2H6PT=(0.00077)(5.42atm)=0.0042atm

Molar concentration of reactants can be determined with the help of ideal gas equation,

nV=PRTnVmolarconcentration

MCH3=PCH3RT=0.00050atm0.0821L.atm/mol.K×600K=1.0×104MMC2H6=PC2H6RT=0.00042atm0.0821L.atm/mol.K×600K=8.5×105M

Substitute the concentration and the rate constant into the rate law to find the initial rate of the reaction,

Rate=k[CH3][C2H6]Rate=(3.0×104M-1s-1)×(1.0×10-4M)×(8.5×10-5M)Rate=2.6×10-4M/s

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 14 Solutions

Package: General Chemistry with Connect 2-year Access Card

Ch. 14.4 - Practice Exercise The first-order rate constant...Ch. 14.4 - Review of Concepts (a) What can you deduce about...Ch. 14.5 - Practice Exercise The reaction between NO2 and CO...Ch. 14.5 - Prob. 1RCCh. 14.6 - Prob. 1RCCh. 14 - Prob. 14.1QPCh. 14 - 15.2 Explain the difference between physical...Ch. 14 - Prob. 14.3QPCh. 14 - Prob. 14.4QPCh. 14 - Prob. 14.5QPCh. 14 - 14.6 Consider the reaction Suppose that at a...Ch. 14 - Prob. 14.7QPCh. 14 - 14.8 What are the units for the rate constants of...Ch. 14 - Prob. 14.9QPCh. 14 - Prob. 14.10QPCh. 14 - Prob. 14.11QPCh. 14 - Prob. 14.13QPCh. 14 - Prob. 14.14QPCh. 14 - Prob. 14.15QPCh. 14 - Prob. 14.16QPCh. 14 - Prob. 14.17QPCh. 14 - Prob. 14.18QPCh. 14 - Prob. 14.19QPCh. 14 - Prob. 14.20QPCh. 14 - 14.21 What is the half-life of a compound if 75...Ch. 14 - 14.22 The thermal decomposition of phosphine (PH3)...Ch. 14 - Prob. 14.23QPCh. 14 - Prob. 14.24QPCh. 14 - 14.25 Consider the first-order reaction A → B...Ch. 14 - Prob. 14.26QPCh. 14 - 14.27 Define activation energy. What role does...Ch. 14 - Prob. 14.28QPCh. 14 - Prob. 14.29QPCh. 14 - 14.30 As we know, methane burns readily in oxygen...Ch. 14 - Prob. 14.31QPCh. 14 - Prob. 14.32QPCh. 14 - Prob. 14.33QPCh. 14 - Prob. 14.34QPCh. 14 - Prob. 14.35QPCh. 14 - Prob. 14.36QPCh. 14 - Prob. 14.37QPCh. 14 - 14.38 The rate at which tree crickets chirp is 2.0...Ch. 14 - 14.39 The diagram here describes the initial state...Ch. 14 - Prob. 14.40QPCh. 14 - Prob. 14.41QPCh. 14 - Prob. 14.42QPCh. 14 - 14.43 Explain why termolecular reactions are...Ch. 14 - 14.44 What is the rate-determining step of a...Ch. 14 - Prob. 14.45QPCh. 14 - Prob. 14.46QPCh. 14 - Prob. 14.47QPCh. 14 - Prob. 14.48QPCh. 14 - Prob. 14.49QPCh. 14 - Prob. 14.50QPCh. 14 - Prob. 14.51QPCh. 14 - Prob. 14.52QPCh. 14 - Prob. 14.53QPCh. 14 - Prob. 14.54QPCh. 14 - Prob. 14.55QPCh. 14 - Prob. 14.56QPCh. 14 - Prob. 14.57QPCh. 14 - Prob. 14.58QPCh. 14 - Prob. 14.59QPCh. 14 - Prob. 14.60QPCh. 14 - Prob. 14.61QPCh. 14 - Prob. 14.62QPCh. 14 - Prob. 14.63QPCh. 14 - Prob. 14.64QPCh. 14 - Prob. 14.65QPCh. 14 - 14.66 The decomposition of N2O to N2 and O2 is a...Ch. 14 - Prob. 14.67QPCh. 14 - Prob. 14.68QPCh. 14 - 14.69 Consider the zero-order reaction a → B....Ch. 14 - Prob. 14.70QPCh. 14 - Prob. 14.72QPCh. 14 - Prob. 14.73QPCh. 14 - Prob. 14.74QPCh. 14 - Prob. 14.75QPCh. 14 - Prob. 14.76QPCh. 14 - Prob. 14.77QPCh. 14 - Prob. 14.78QPCh. 14 - Prob. 14.79QPCh. 14 - Prob. 14.80QPCh. 14 - Prob. 14.81QPCh. 14 - Prob. 14.82QPCh. 14 - 14.83 When a mixture of methane and bromine is...Ch. 14 - 14.84 Consider this elementary step: (a)...Ch. 14 - Prob. 14.85QPCh. 14 - Prob. 14.86QPCh. 14 - 14.87 In recent years ozone in the stratosphere...Ch. 14 - Prob. 14.88QPCh. 14 - Prob. 14.90QPCh. 14 - Prob. 14.91QPCh. 14 - Prob. 14.92QPCh. 14 - Prob. 14.93QPCh. 14 - Prob. 14.94QPCh. 14 - Prob. 14.95QPCh. 14 - Prob. 14.96QPCh. 14 - Prob. 14.97QPCh. 14 - Prob. 14.98QPCh. 14 - Prob. 14.100QPCh. 14 - Prob. 14.101QPCh. 14 - 14.102 Consider the potential energy profiles...Ch. 14 - Prob. 14.103QPCh. 14 - Prob. 14.104QPCh. 14 - 14.105 The activation energy for the...Ch. 14 - Prob. 14.106QPCh. 14 - Prob. 14.107SPCh. 14 - Prob. 14.108SPCh. 14 - Prob. 14.109SPCh. 14 - Prob. 14.110SPCh. 14 - Prob. 14.111SPCh. 14 - Prob. 14.112SPCh. 14 - Prob. 14.113SPCh. 14 - Prob. 14.114SPCh. 14 - Prob. 14.115SPCh. 14 - 14.116 To prevent brain damage, a drastic medical...Ch. 14 - Prob. 14.117SPCh. 14 - Prob. 14.118SP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY