THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.7, Problem 62P
An average person produces 0.25 kg of moisture while taking a shower and 0.05 kg while bathing in a tub. Consider a family of four who each shower once a day in a bathroom that is not ventilated. Taking the heat of vaporization of water to be 2450 kJ/kg, determine the contribution of showers to the latent heat load of the air conditioner per day in summer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A classroom that normally contains 40 people is to be air-conditioned with window air-conditioning units of 5-kW cooling capacity. A person at rest may be assumed to dissipate heat at a rate of about 360kJ/h. There are 10 light bulbs in the room, each with a rating of 100W. The rate of heat transfer to the classroom through the walls and the windows is estimated to be 15,000kJ/h. If the room air is to be maintained at a constant temperature of 21°C, determine the number of window air-conditioning units required.
A classroom type room with 45students taking an exam in thermodynamics is expected to release a body heat of about 8kJ/hr per person. In order to compensate this heat dissipation, an air-conditioning unit is to be installed. If specific heat capacity and density of air is 1.0062kJ/kg-K and 1.2kg/m3, determine the volume of air flow required in examination room if the air is to be cooled down from 290C to 200C.
a. 8.5177Li/s b. 9.1262Li/s c. 9.2022Li/s d. 9.0501Li/s
The U.S. Department of Energy estimates that 570,000 barrels of oil would be saved per day if every household in the United States lowered the thermostat setting in winter by 6°F (3.3°C). Assuming the average heating season to be 180 days and the cost of oil to be $55/barrel, determine how much money would be saved per year.
Chapter 14 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is an adiabatic process? What is an adiabatic system?arrow_forwardOverall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanisms of elimination are radiation, evaporation of sweat (2,430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection. A person working out in a gym has a metabolic rate of 2,500 kJ/h. His body temperature is 37°C, and the outside temperature 28°C. Assume the skin has an area of 2.0 m² and emissivity of 0.97. ( = 5.6696 x 108 W/m². K4) (a) At what rate is his excess thermal energy dissipated by radiation? (Enter your answer to at least one decimal place.) w (b) If he eliminates 0.32 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat? (Enter your answer to at least one decimal place.) w (c) At what rate is energy eliminated by evaporation from the lungs? (Enter your answer to at least one decimal place.) W (d) At what rate must the remaining excess energy be eliminated through conduction and…arrow_forwardA classroom that normally contains 40 people is tobe air-conditioned with window air-conditioning units of 5-kW cooling capacity. A person at rest may be assumed todissipate heat at a rate of about 360 kJ/h. There are 10 lightbulbs in the room, each with a rating of 100 W. The rate ofheat transfer to the classroom through the walls and the windows is estimated to be 15,000 kJ/h. If the room air is to bemaintained at a constant temperature of 21°C, determine the number of window air-conditioning units requiredarrow_forward
- A fluid at 700 kPaa, with a specific volume of 0.25 m3/kg and a velocity of 175 m/s, enters a device. Heat loss from the device by radiation is 23 kJ/kg. The work done by the fluid is 465 kJ/kg. The fluid exits at 136 kPaa, 0.94 m3/kg and 335 m/s. Determine the change in internal energy, in kJ/kg. (answer in 1 decimal place)arrow_forwardConsider the heating of water in a pan on a top of a range. If 24 kJ of heat is transferred to the water from heating element and 6 kJ of it is lost from the water to the surrounding air. Determine;(a) the net heat transfer to the water,(b) the efficiency for boiling water.arrow_forwardHow does heat transfer and energy transformations make heat engines like geothermal plants work?arrow_forward
- The Refrigerating Effect of 94 tons of refrigeration is 127.75 kJ/kg. Determine the mass flow rate of the refrigerant.arrow_forwardA typical one-half-carlot-capacity banana room contains 18 pallets of bananas. Each pallet consists of 24 boxes, and thus the room stores 432 boxes of bananas. A box holds an average of 19 kg of bananas and is made of 2.3 kg of fiberboard. The specific heats of banana and the fiberboard are 3.55 kJ/kg . C and 1.7 kJ/kg. C, respectively. The peak heat of respiration of bananas is 0.3 W/kg. The bananas are cooled at a rate of 0.2 C/h. If the temperature rise of refrigerated air is not to exceed 1.5 C as it flows through the room, determine the minimum flow rate of air needed. Take the density specific heat of air to be 1.2 kg/m3 and 1.0 kJ/kg C.arrow_forwardIn adiabatic process, the system has Q=max. value O W=0 O Q=0 O U-0 O * A vertical piston-cylinder device contains water and is being heated on top of a range. During the process, 65 Btu of heat is transferred to the water, and heat losses from the side walls amount to 8 Btu. The piston rises as a result of evaporation, and 5 Btu of work is done by the vapor. Determine the change in the energy of the water .for this process 61 Btu O 52 Btu 55 Btu 60 Btu * hp compressor in a facility that operates at full load-75 for 2500 h a year is powered by an electric motor that has an efficiency of 93 percent. If the unit cost of electricity is $0.11/kWh, the annual electricity cost of this :compressor is 16,540 $ 19,180 $ O 5,380 $ O 14,300 $ O barometric pressure or 1 atmospheric 1 pressure is equal to 1.019 kgf/cm2 1 kgf/cm2 0.9 kgf/cm2 0 kgf/cm2 Oarrow_forward
- What is the change in the internal energy, in Btu/lbm, of air as its temperature changes from 100 to 200°F? Is there any difference if the temperature were to change from 0 to 100°F?arrow_forwardIn an experimental set-up, 5 kg of salt solution is heated in a glass vessel by a gas burner. An electric stirrer is used to ensure uniform heating of the solution. The internal energy of the solution is to be increased from 200 to 250 KJ/kg in 15 minutes. The power consumption of the stirrer is 30 W. The rate of heat loss from the vessel is 50W. Determine the power of the gas burner required.arrow_forwardA 2.83 kg of air at 1.08 m3 underwent an isothermal process wherein its initial pressure of 52.68 kPa was doubled. Determine the work done (kJ) considering a non-flow system. Consider the individual gas constant, specific heat at constant pressure, and specific heat ratio of air as 0.287 kJ/kg-K, 1.00 kJ/kg-K, and 1.4 respectively.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer [Conduction, Convection, and Radiation]; Author: Mike Sammartano;https://www.youtube.com/watch?v=kNZi12OV9Xc;License: Standard youtube license