PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
11th Edition
ISBN: 9780198826910
Author: ATKINS
Publisher: Oxford University Press
Question
Book Icon
Chapter 16, Problem 16A.2AE

(i)

Interpretation Introduction

Interpretation:

The diffusion constant of argon at 20 °C and 1.00 Pa is to be calculated.  The flow of gas due to diffusion at 1.00 Pa has to be calculated.

Concept introduction:

Diffusion of gas is a process in which the gas follows from higher pressure area to lower pressure area.  The process of diffusion requires a potential gradient.  The diffusion coefficient of a gas is given by the expression as shown below.

    D=13(kTσp)(8RTπM)1/2

(i)

Expert Solution
Check Mark

Answer to Problem 16A.2AE

The diffusion constant of argon at 20 °C and 1.00 Pa is 147.69 m2 s1_.  The flow of gas due to diffusion at 1.00 Pa is 6062.8 mol m2 s1_.

Explanation of Solution

The diffusion coefficient of a gas is given by the expression as shown below.

    D=13(kTσp)(8RTπM)1/2        (1)

Where,

  • R is the gas constant (8.314J K1 mol1).
  • T is the temperature.
  • k is the Boltzmann constant (1.381×1023J K1).
  • σ is the collision cross section area.
  • M is the molar mass.
  • p is the pressure.

The temperature of argon gas is 20 °C.

The conversion of temperature in Kelvin is shown below.

    T=(273+20.0 °C)K=293 K

The pressure of argon gas at 20 °C is 1.00 Pa.

The conversion of pressure in kg m1 s2 is shown below.

    p=(1.00 Pa)(1 kg m1 s21 Pa)=1.00 kg m1 s2

The value of σ for argon has is 0.36 nm2.

The conversion of σ in m2 is shown below.

    σ=(0.36 nm2)(1 m21020 nm)=0.36×1020 m2

The molar mass of argon is 39.948×103 kg mol1.

Substitute the value of R, T, k, σ, M, and p in the equation (1).

    D=(13((1.381×1023J K1)(293 K)(0.36×1020 m2)(1.00 kg m1 s2))(8(8.314J K1 mol1)(1kg m2 s21J)(293 K)(3.14)(39.948×103 kg mol1))1/2)=(0.3747)(155361.3328)1/2 m2 s1=(0.3747)(394.159) m2 s1=147.69 m2 s1_

Therefore, the diffusion constant of argon at 20 °C and 1.00 Pa is 147.69 m2 s1_

The pressure gradient of the pipe is 1.0 bar m1.

The flow of gas due to diffusion (JzNA) is given by the expression as shown below.

    JzNA=(DRT)dpdz

Where,

  • dpdz is the pressure gradient.

Substitute the values of dpdz, D, R, and T in the above equation.

    JzNA=(147.69m2 s1(8.314J K1 mol1)(1kg m2 s21J)(293 K))(1.0 bar m1)=(0.0606 mol s kg1)(1.0 bar m1)(105 kg m1 s21 bar)=6062.8 mol m2 s1_

Therefore, the flow of gas due to diffusion at 1.00 Pa is 6062.8 mol m2 s1_.

(b)

Interpretation Introduction

Interpretation:

The diffusion constant of argon at 20 °C and 100 kPa is to be calculated.  The flow of gas due to diffusion at 100 kPa has to be calculated.

Concept introduction:

As mentioned in the concept introduction in part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 16A.2AE

The diffusion constant of argon at 20 °C and 100 kPa is 1.4769×103 m2 s1_.  The flow of gas due to diffusion at 100 kPa is 6.06289×10-7 mol m2 s1_.

Explanation of Solution

The diffusion coefficient of a gas is given by the expression as shown below.

    D=13(kTσp)(8RTπM)1/2        (1)

Where,

  • R is the gas constant (8.314J K1 mol1).
  • T is the temperature.
  • k is the Boltzmann constant (1.381×1023J K1).
  • σ is the collision cross section area.
  • M is the molar mass.
  • p is the pressure.

The temperature of argon gas is 20 °C.

The conversion of temperature in Kelvin is shown below.

    T=(273+20.0 °C)K=293 K

The pressure of argon gas at 20 °C is 100 kPa.

The conversion of pressure in kg m1 s2 is shown below.

    p=(100 kPa)(103 kg m1 s21 kPa)=1.00×105 kg m1 s2

The value of σ for argon has is 0.36 nm2.

The conversion of σ in m2 is shown below.

    σ=(0.36 nm2)(1 m21020 nm)=0.36×1020 m2

The molar mass of argon is 39.948×103 kg mol1.

Substitute the value of R, T, k, σ, M, and p in the equation (1).

    D=(13((1.381×1023J K1)(293 K)(0.36×1020 m2)(1.00×105 kg m1 s2))(8(8.314J K1 mol1)(1kg m2 s21J)(293 K)(3.14)(39.948×103 kg mol1))1/2)=(3.747×106)(155361.3328)1/2 m2 s1=(3.747×106)(394.159) m2 s1=1.4769×103 m2 s1_

Therefore, the diffusion constant of argon at 20 °C and 100 kPa is 1.4769×103 m2 s1_

The pressure gradient of the pipe is 1.0 bar m1.

The flow of gas due to diffusion (JzNA) is given by the expression as shown below.

    JzNA=(DRT)dpdz

Where,

  • dpdz is the pressure gradient.

Substitute the values of dpdz, D, R, and T in the above equation.

    JzNA=(1.4769×103m2 s1(8.314J K1 mol1)(1kg m2 s21J)(293 K))(1.0 bar m1)=(6.062 mol s kg1)(1.0 bar m1)(105 kg m1 s21 bar)=6.06289×10-7 mol m2 s1_

Therefore, the flow of gas due to diffusion at 100 kPa is 6.06289×10-7 mol m2 s1_.

(c)

Interpretation Introduction

Interpretation:

The diffusion constant of argon at 20 °C and 10.0 MPa is to be calculated.  The flow of gas due to diffusion at 10.0 MPa has to be calculated.

Concept introduction:

As mentioned in the concept introduction in part (a).

(c)

Expert Solution
Check Mark

Answer to Problem 16A.2AE

The diffusion constant of argon at 20 °C and 10.0 MPa is 1.4769×105 m2 s1_.  The flow of gas due to diffusion at 10.0 MPa is 6.0628×109 mol m2 s1_.

Explanation of Solution

The diffusion coefficient of a gas is given by the expression as shown below.

    D=13(kTσp)(8RTπM)1/2        (1)

Where,

  • R is the gas constant (8.314J K1 mol1).
  • T is the temperature.
  • k is the Boltzmann constant (1.381×1023J K1).
  • σ is the collision cross section area.
  • M is the molar mass.
  • p is the pressure.

The temperature of argon gas is 20 °C.

The conversion of temperature in Kelvin is shown below.

    T=(273+20.0 °C)K=293 K

The pressure of argon gas at 20 °C is 10.0 MPa.

The conversion of pressure in kg m1 s2 is shown below.

    p=(10.0 MPa)(106 kg m1 s21 MPa)=1.00×107 kg m1 s2

The value of σ for argon has is 0.36 nm2.

The conversion of σ in m2 is shown below.

    σ=(0.36 nm2)(1 m21020 nm)=0.36×1020 m2

The molar mass of argon is 39.948×103 kg mol1.

Substitute the value of R, T, k, σ, M, and p in the equation (1).

    D=(13((1.381×1023J K1)(293 K)(0.36×1020 m2)(1.00×107 kg m1 s2))(8(8.314J K1 mol1)(1kg m2 s21J)(293 K)(3.14)(39.948×103 kg mol1))1/2)=(3.747×108)(155361.3328)1/2 m2 s1=(3.747×108)(394.159) m2 s1=1.4769×105 m2 s1_

Therefore, the diffusion constant of argon at 20 °C and 10.0 MPa is 1.4769×105 m2 s1_.

The pressure gradient of the pipe is 1.0 bar m1.

The flow of gas due to diffusion (JzNA) is given by the expression as shown below.

    JzNA=(DRT)dpdz

Where,

  • dpdz is the pressure gradient.

Substitute the values of dpdz, D, R, and T in the above equation.

    JzNA=(1.4769×105m2 s1(8.314J K1 mol1)(1kg m2 s21J)(293 K))(1.0 bar m1)=(0.0606 mol s kg1)(1.0 bar m1)(105 kg m1 s21 bar)=6.0628×109 mol m2 s1_

Therefore, the flow of gas due to diffusion at 10.0 MPa is 6.0628×109 mol m2 s1_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 16 Solutions

PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY