An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1.6, Problem 41P

To measure the heat capacity of an object, all you usually have to do is put it in thermal contact with another object whose heat capacity you know. As an example, suppose that a chunk of metal is immersed in boiling water ( 100 ° C ) , then is quickly transferred into a Styrofoam cup containing 250 g of water at 20 ° C . After a minute or so, the temperature of the contents of the cup is 24 ° C . Assume that during this time no significant energy is transferred between the contents of the cup and the surrounding. The heat capacity of the cup itself is negligible.

  1. How much heat is gained by the water?
  2. How much heat is lost by the metal?
  3. What is the heat capacity of this chunk of metal?
  4. If the mass of the chunk of metal is 100 g, what is its specific heat capacity?

Blurred answer
03:54
Students have asked these similar questions
A common practice for a person with a high fever is to take a bath in cool water. Assuming an 80 kg person is really ill and needs to cool down from 40°C to 37°C. What is the minimum amount of water needed for bathing assuming the water begins at room temperature, 25°C? The specific heat of the body on average is 3470 J/kg°C and water is 4186 J/kg°C.   16.6 kg   212.2 kg   200 kg   19.8 kg
A rectangular window in a home has a length of 1.5 m and a height of 0.80 m. If the window allows heat to escape from the  home at a rate of 2,000 watts, how thick must the window be if the inside temperature of the home is 220 C and the outside temperature is 3.00C? (Assume that the coefficient of thermal conduction of glass is 0.80 W/mK.)   a. 7.1 mm   b. 124 mm   c. 9.1 mm   d. 8.1 mm   e. 11 mm
A silver kettle weighs 1.07 kg. (The specific heat of silver is 0.235 J/g·°C)   (a) What is the heat capacity (in J/°C) of the kettle?  _____ J/°C   (b) How much heat (in J) is required to increase the temperature of this kettle from 20.5°C to 98.7°C?   _____ J   (c) How much heat (in J) is required to heat this kettle from 20.5°C to 98.7°C if it contains 1.03 L of water (density of 0.997 g/mL and a specific heat of 4.18 J/g·°C across the temperature range)?  _____ J

Chapter 1 Solutions

An Introduction to Thermal Physics

Ch. 1.2 - Rooms A and B are the same size, and are connected...Ch. 1.2 - Calculate the average volume per molecule for an...Ch. 1.2 - A mole is approximately the number of protons in a...Ch. 1.2 - Calculate the mass of a mole of dry air, which is...Ch. 1.2 - Estimate the average temperature of the air inside...Ch. 1.2 - Prob. 16PCh. 1.2 - Prob. 17PCh. 1.2 - Prob. 18PCh. 1.2 - Suppose you have a gas containing hydrogen...Ch. 1.2 - Prob. 20PCh. 1.2 - During a hailstorm, hailstones with an average...Ch. 1.2 - Prob. 22PCh. 1.3 - Calculate the total thermal energy in a liter of...Ch. 1.3 - Calculate the total thermal energy in a gram of...Ch. 1.3 - List all the degrees of freedom, or as many as you...Ch. 1.4 - A battery is connected in series to a resistor,...Ch. 1.4 - Give an example of a process in which no heat is...Ch. 1.4 - Estimate how long it should take to bring a cup of...Ch. 1.4 - A cup containing 200 g of water is sitting on your...Ch. 1.4 - Put a few spoonfuls of water into a bottle with a...Ch. 1.5 - Imagine some helium in cylinder with an initial...Ch. 1.5 - Prob. 32PCh. 1.5 - An ideal gas is made to undergo the cyclic process...Ch. 1.5 - An ideal diatomic gas, in a cylinder with a...Ch. 1.5 - Prob. 35PCh. 1.5 - In the course of pumping up a bicycle tire, a...Ch. 1.5 - Prob. 37PCh. 1.5 - Two identical bubbles of gas form at the bottom of...Ch. 1.5 - By applying Newtons laws to the oscillations of a...Ch. 1.5 - In problem 1.16 you calculated the pressure of...Ch. 1.6 - To measure the heat capacity of an object, all you...Ch. 1.6 - The specific heat capacity of Albertsons Rotini...Ch. 1.6 - Calculate the heat capacity of liquid water per...Ch. 1.6 - Prob. 44PCh. 1.6 - Prob. 45PCh. 1.6 - Measured heat capacities of solids and liquids are...Ch. 1.6 - Your 200-g cup of tea is boiling-hot. About how...Ch. 1.6 - When spring finally arrives in the mountains, the...Ch. 1.6 - Prob. 49PCh. 1.6 - Consider the combustion of one mole of methane...Ch. 1.6 - Use the data at the back of this book to determine...Ch. 1.6 - The enthalpy of combustion of a gallon (3.8...Ch. 1.6 - Look up the enthalpy of formation of atomic...Ch. 1.6 - Prob. 54PCh. 1.6 - Heat capacities are normally positive, but there...Ch. 1.7 - Calculate the rate of heat conduction through a...Ch. 1.7 - Home owners and builders discuss thermal...Ch. 1.7 - According to a standard reference table, the R...Ch. 1.7 - Make a rough estimate of the total rate or...Ch. 1.7 - A frying pan is quickly heated on the stovetop to...Ch. 1.7 - Geologists measure conductive heat flow out of the...Ch. 1.7 - Consider a uniform rod of material whose...Ch. 1.7 - Prob. 63PCh. 1.7 - Make a rough estimate of the thermal conductivity...Ch. 1.7 - Prob. 65PCh. 1.7 - In analogy with the thermal conductivity, derive...Ch. 1.7 - Make a rough estimate of how far food coloring (or...Ch. 1.7 - Prob. 68PCh. 1.7 - Imagine a narrow pipe, filled with fluid, in which...Ch. 1.7 - Prob. 70P

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY