An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Concept explainers

Question
Book Icon
Chapter 1.7, Problem 65P
To determine

A rough estimate of Avogadro’s number.

Blurred answer
Students have asked these similar questions
Pretend that you live in the 19th century and don't know the value of Avogadro's number* (or of Boltzmann's constant or of the mass or size of any molecule). Show how you could make a rough estimate of Avogadro's number from a measurement of the thermal conductivity of a gas, together with other measurements that are relatively easy.
In this problem you are to consider an adiabaticexpansion of an ideal diatomic gas, which means that the gas expands with no addition or subtraction of heat. Assume that the gas is initially at pressure p0, volume V0, and temperature T0. In addition, assume that the temperature of the gas is such that you can neglect vibrational degrees of freedom. Thus, the ratio of heat capacities is γ=Cp/CV=7/5. Note that, unless explicitly stated, the variable γshould not appear in your answers--if needed use the fact that γ=7/5 for an ideal diatomic gas.   Find an analytic expression for p(V), the pressure as a function of volume, during the adiabatic expansion. Express the pressure in terms of V and any or all of the given initial values p0, T0, and V0.   p(V) = __________
In this problem you are to consider an adiabaticexpansion of an ideal diatomic gas, which means that the gas expands with no addition or subtraction of heat. Assume that the gas is initially at pressure p0, volume V0, and temperature T0. In addition, assume that the temperature of the gas is such that you can neglect vibrational degrees of freedom. Thus, the ratio of heat capacities is γ=Cp/CV=7/5. Note that, unless explicitly stated, the variable γshould not appear in your answers--if needed use the fact that γ=7/5 for an ideal diatomic gas.   A) Find an analytic expression for p(V), the pressure as a function of volume, during the adiabatic expansion. Express the pressure in terms of V and any or all of the given initial values p0, T0, and V0.     p(V) = __________   B) At the end of the adiabatic expansion, the gas fills a new volume V1, where V1>V0. Find W, the work done by the gas on the container during the expansion. Express the work in terms of p0, V0, and V1. Your…

Chapter 1 Solutions

An Introduction to Thermal Physics

Ch. 1.2 - Rooms A and B are the same size, and are connected...Ch. 1.2 - Calculate the average volume per molecule for an...Ch. 1.2 - A mole is approximately the number of protons in a...Ch. 1.2 - Calculate the mass of a mole of dry air, which is...Ch. 1.2 - Estimate the average temperature of the air inside...Ch. 1.2 - Prob. 16PCh. 1.2 - Prob. 17PCh. 1.2 - Prob. 18PCh. 1.2 - Suppose you have a gas containing hydrogen...Ch. 1.2 - Prob. 20PCh. 1.2 - During a hailstorm, hailstones with an average...Ch. 1.2 - Prob. 22PCh. 1.3 - Calculate the total thermal energy in a liter of...Ch. 1.3 - Calculate the total thermal energy in a gram of...Ch. 1.3 - List all the degrees of freedom, or as many as you...Ch. 1.4 - A battery is connected in series to a resistor,...Ch. 1.4 - Give an example of a process in which no heat is...Ch. 1.4 - Estimate how long it should take to bring a cup of...Ch. 1.4 - A cup containing 200 g of water is sitting on your...Ch. 1.4 - Put a few spoonfuls of water into a bottle with a...Ch. 1.5 - Imagine some helium in cylinder with an initial...Ch. 1.5 - Prob. 32PCh. 1.5 - An ideal gas is made to undergo the cyclic process...Ch. 1.5 - An ideal diatomic gas, in a cylinder with a...Ch. 1.5 - Prob. 35PCh. 1.5 - In the course of pumping up a bicycle tire, a...Ch. 1.5 - Prob. 37PCh. 1.5 - Two identical bubbles of gas form at the bottom of...Ch. 1.5 - By applying Newtons laws to the oscillations of a...Ch. 1.5 - In problem 1.16 you calculated the pressure of...Ch. 1.6 - To measure the heat capacity of an object, all you...Ch. 1.6 - The specific heat capacity of Albertsons Rotini...Ch. 1.6 - Calculate the heat capacity of liquid water per...Ch. 1.6 - Prob. 44PCh. 1.6 - Prob. 45PCh. 1.6 - Measured heat capacities of solids and liquids are...Ch. 1.6 - Your 200-g cup of tea is boiling-hot. About how...Ch. 1.6 - When spring finally arrives in the mountains, the...Ch. 1.6 - Prob. 49PCh. 1.6 - Consider the combustion of one mole of methane...Ch. 1.6 - Use the data at the back of this book to determine...Ch. 1.6 - The enthalpy of combustion of a gallon (3.8...Ch. 1.6 - Look up the enthalpy of formation of atomic...Ch. 1.6 - Prob. 54PCh. 1.6 - Heat capacities are normally positive, but there...Ch. 1.7 - Calculate the rate of heat conduction through a...Ch. 1.7 - Home owners and builders discuss thermal...Ch. 1.7 - According to a standard reference table, the R...Ch. 1.7 - Make a rough estimate of the total rate or...Ch. 1.7 - A frying pan is quickly heated on the stovetop to...Ch. 1.7 - Geologists measure conductive heat flow out of the...Ch. 1.7 - Consider a uniform rod of material whose...Ch. 1.7 - Prob. 63PCh. 1.7 - Make a rough estimate of the thermal conductivity...Ch. 1.7 - Prob. 65PCh. 1.7 - In analogy with the thermal conductivity, derive...Ch. 1.7 - Make a rough estimate of how far food coloring (or...Ch. 1.7 - Prob. 68PCh. 1.7 - Imagine a narrow pipe, filled with fluid, in which...Ch. 1.7 - Prob. 70P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning