Physics - With Connect Access
Physics - With Connect Access
3rd Edition
ISBN: 9781259601897
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 67P

(a)

To determine

The magnitude of the electric field at a point 1.75cm from the center.

(a)

Expert Solution
Check Mark

Answer to Problem 67P

The magnitude of the electric field at a point 1.75cm from the center is 6.8×106N/C_.

Explanation of Solution

Given that the charge of the inner sphere is 230nC, the distance to the point under consideration is 1.75cm, The inner radius of the shell is 2.25cm, the outer radius of the shell is 2.75cm, and the radius of the inner sphere is 1.50cm.

The point under consideration is in between the inner radius of the shell and the sphere. The electric field between the charged sphere and the spherical shell is the same as that due to a point charge at the center of the sphere with same charge as the sphere.

Write the expression for the magnitude of electric field at an outside point of a charged sphere.

E=kqr2 (I)

Here, E is the magnitude of electric field, k is a constant (k=8.988×109Nm2/C2), q is the charge of the sphere, and r is the distance to the point from the center of the sphere.

Conclusion:

Substitute 8.988×109Nm2/C2 for k, 230nC for q, 1.75cm for r in equation (I) to find E.

E=(8.988×109Nm2/C2)(230nC)(1.75cm)2=(8.988×109Nm2/C2)(230nC×1C1×109nC)(1.75cm×1m100cm)2=6.8×106N/C

Therefore, the magnitude of the electric field at a point 1.75cm from the center is 6.8×106N/C_.

(b)

To determine

The magnitude of the electric field at a point 2.50cm from the center.

(b)

Expert Solution
Check Mark

Answer to Problem 67P

The magnitude of the electric field at a point 2.50cm from the center is zero_.

Explanation of Solution

Given that the charge of the inner sphere is 230nC, the distance to the point under consideration is 2.50cm, The inner radius of the shell is 2.25cm, the outer radius of the shell is 2.75cm, and the radius of the inner sphere is 1.50cm.

The electric field inside any conducting material in electrostatic equilibrium is zero. The point under consideration in inside the conducting spherical shell. This indicates that the electric field at any point inside the conducting spherical shell is zero.

Conclusion:

Therefore, the magnitude of the electric field at a point 2.50cm from the center is zero_.

(c)

To determine

The electric field at a point 3.00cm from the center.

(c)

Expert Solution
Check Mark

Answer to Problem 67P

The electric field at a point 3.00cm from the center is 2.3×106N/C, directed away from the center_.

Explanation of Solution

Given that the charge of the inner sphere is 230nC, the distance to the point under consideration is 3.00cm, The inner radius of the shell is 2.25cm, the outer radius of the shell is 2.75cm, and the radius of the inner sphere is 1.50cm.

The point under consideration outside the sphere as well as shell. The electric field outside of the spherical shell enclosing the charged sphere is the same as that due to a point charge at the center of the sphere with same charge as the sphere.

Equation (I) gives the expression for the magnitude of electric field at an outside point of a charged sphere.

E=kqr2

Conclusion:

Substitute 8.988×109Nm2/C2 for k, 230nC for q, 3.00cm for r in equation (I) to find E.

E=(8.988×109Nm2/C2)(230nC)(3.00cm)2=(8.988×109Nm2/C2)(230nC×1C1×109nC)(3.00cm×1m100cm)2=2.3×106N/C

Electric field from a positive point charge is always diverges away from it. For a sphere of positive charge, the electric field will be radially outward in direction. Hence, here, the electric field is directed away from the center.

Therefore, the electric field at a point 3.00cm from the center is 2.3×106N/C, directed away from the center_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 16 Solutions

Physics - With Connect Access

Ch. 16.4 - Prob. 16.8PPCh. 16.5 - Prob. 16.5CPCh. 16.5 - 16.9 Slowing Some Protons If a beam of protons...Ch. 16.5 - Prob. 16.10PPCh. 16.6 - Prob. 16.11PPCh. 16.7 - Prob. 16.12PPCh. 16.7 - Prob. 16.13PPCh. 16 - Prob. 1CQCh. 16 - Prob. 2CQCh. 16 - Prob. 3CQCh. 16 - Prob. 4CQCh. 16 - Prob. 5CQCh. 16 - Prob. 6CQCh. 16 - Prob. 7CQCh. 16 - Prob. 8CQCh. 16 - Prob. 9CQCh. 16 - Prob. 10CQCh. 16 - Prob. 11CQCh. 16 - Prob. 12CQCh. 16 - 13. An electroscope consists of a conducting...Ch. 16 - Prob. 14CQCh. 16 - Prob. 15CQCh. 16 - 16. In some textbooks, the electric field is...Ch. 16 - Prob. 17CQCh. 16 - Prob. 18CQCh. 16 - Prob. 19CQCh. 16 - Prob. 1MCQCh. 16 - 2. In electrostatic equilibrium, the excess...Ch. 16 - Prob. 3MCQCh. 16 - Prob. 4MCQCh. 16 - Prob. 5MCQCh. 16 - 6. A tiny charged pellet of mass m is suspended at...Ch. 16 - Prob. 7MCQCh. 16 - Prob. 8MCQCh. 16 - Prob. 9MCQCh. 16 - Prob. 10MCQCh. 16 - 1. Find the total positive charge of all the...Ch. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - 6. A positively charged rod is brought near two...Ch. 16 - 7. A metal sphere A has charge Q. Two other...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10PCh. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - 14. How many electrons must be removed from each...Ch. 16 - Prob. 15PCh. 16 - 16. Two metal spheres separated by a distance much...Ch. 16 - 17. In the figure, a third point charge − q is...Ch. 16 - 18. Two point charges are separated by a distance...Ch. 16 - 19. A K+ ion and a Cl− ion are directly across...Ch. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - 28. The electric field across a cell membrane is...Ch. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - 34. What is the electric field at x = d (point...Ch. 16 - 35. What is the electric field at x = 2d (point S...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - 39. Sketch the electric field lines in the plane...Ch. 16 - 40. Sketch the electric field lines near two...Ch. 16 - 41. Find the electric field at point B, midway...Ch. 16 - 42. Find the electric field at point C, the center...Ch. 16 - Problems 41-44. Two tiny objects with equal...Ch. 16 - 44. Where would you place a third small object...Ch. 16 - Prob. 45PCh. 16 - 46. Two equal charges (Q = +1.00 nC) are situated...Ch. 16 - 47. Suppose a charge q is placed at point x = 0, y...Ch. 16 - 48. Two point charges, q1 = +20.0 nC and q2 =...Ch. 16 - Prob. 49PCh. 16 - 50. In each of six situations, a particle (mass m,...Ch. 16 - 51. An electron is placed in a uniform electric...Ch. 16 - 52. An electron is projected horizontally into the...Ch. 16 - 53. A horizontal beam of electrons initially...Ch. 16 - 54. A particle with mass 2.30 g and charge +10.0...Ch. 16 - Problems 54 and 55 55. Consider the same...Ch. 16 - 56. ✦ Some forms of cancer can be treated using...Ch. 16 - Prob. 57PCh. 16 - Prob. 58PCh. 16 - Problems 59-61. A conducting sphere (radius a) is...Ch. 16 - 60. The inner sphere has a net charge of +6 μC and...Ch. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - Prob. 63PCh. 16 - Prob. 64PCh. 16 - Prob. 65PCh. 16 - 66. A hollow conducting sphere of radius R carries...Ch. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - Prob. 71PCh. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - 76. A thin, flat sheet of charge has a uniform...Ch. 16 - Prob. 77PCh. 16 - 78. A parallel-plate capacitor consists of two...Ch. 16 - Prob. 79PCh. 16 - Prob. 80PCh. 16 - 81. In a thunderstorm, charge is separated through...Ch. 16 - 82. Two otherwise identical conducting spheres...Ch. 16 - 83. Two metal spheres of radius 5.0 cm carry net...Ch. 16 - 84. In the diagram, regions A and C extend far to...Ch. 16 - Prob. 85PCh. 16 - Prob. 86PCh. 16 - Prob. 87PCh. 16 - 88. Consider two protons (charge +e), separated by...Ch. 16 - Prob. 89PCh. 16 - 90. A raindrop inside a thundercloud has charge...Ch. 16 - 91. An electron beam in an oscilloscope is...Ch. 16 - 92. A point charge q1 = +5.0 μC is fixed in place...Ch. 16 - Prob. 93PCh. 16 - 94. Object 4 has mass 90.0 g and hangs from an...Ch. 16 - Prob. 95PCh. 16 - Prob. 96PCh. 16 - Prob. 97PCh. 16 - Prob. 98PCh. 16 - Prob. 99PCh. 16 - Prob. 100PCh. 16 - Prob. 101PCh. 16 - Prob. 102PCh. 16 - Prob. 103PCh. 16 - Prob. 104PCh. 16 - Prob. 105PCh. 16 - Prob. 106PCh. 16 - Prob. 107PCh. 16 - Prob. 108PCh. 16 - Prob. 109PCh. 16 - Prob. 110PCh. 16 - Prob. 111PCh. 16 - Prob. 112PCh. 16 - Prob. 113PCh. 16 - Prob. 114P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY