FUNDAMENTALS OF ELEC.CIRC.(LL) >CUSTOM<
FUNDAMENTALS OF ELEC.CIRC.(LL) >CUSTOM<
6th Edition
ISBN: 9781260503876
Author: Alexander
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 19P

Obtain the Fourier series for the periodic waveform in Fig. 17.57.

Chapter 17, Problem 19P, Obtain the Fourier series for the periodic waveform in Fig. 17.57.

Expert Solution & Answer
Check Mark
To determine

Find the Fourier series for the periodic waveform in Figure 17.57.

Answer to Problem 19P

The Fourier series f(t) for the periodic waveform in Figure 17.57 is 2.5+n=120n2π2((2cos(nπ2)cos(nπ)1)cos(nπ2)t+(2sin(nπ2))sin(nπ2)t).

Explanation of Solution

Given data:

Refer to Figure 17.57 in the textbook.

Formula used:

Write the expression to calculate the fundamental angular frequency.

ω0=2πT (1)

Here,

T is the period of the function.

Write the general expression to calculate trigonometric Fourier series of f(t).

f(t)=a0+n=1(ancosnω0t+bnsinnω0t) (2)

Here,

a0 is the dc component of f(t),

an and bn are the Fourier coefficients,

n is an integer, and

ω0 is the angular frequency.

Write the expression to calculate the dc component of the function f(t).

a0=1T0Tf(t)dt (3)

Write the expression to calculate Fourier coefficients.

an=2T0Tf(t)cosnω0tdt (4)

bn=2T0Tf(t)sinnω0tdt (5)

Calculation:

The given waveform is drawn as Figure 1.

FUNDAMENTALS OF ELEC.CIRC.(LL) >CUSTOM<, Chapter 17, Problem 19P

Refer to the Figure 1. The Fourier series function of the waveform is defined as,

f(t)={10t, 0<t<12010t, 1<t<20, 2<t<4

The time period of the function in Figure 1 is,

T=4

Substitute 4 for T in equation (1) to find ω0.

ω0=2π4=π2

Substitute 4 for T in equation (3) to find a0.

a0=1404f(t)dt=14(01f(t)dt+12f(t)dt+24f(t)dt)=14(0110tdt+12(2010t)dt+240dt)=14(1001tdt+1012(2t)dt+0)

Simplify the above equation to find a0.

a0=14(10[t22]01+10[2tt22]12)=14(102(1202)+10[(2(2)(2)22)(2(1)(1)22)])=14(5+10[(442)(212)])=2.5

Simplify the above equation to find a0.

a0=5[(112)0]=5(0.5)=2.5

Substitute 4 for T and π2 for ω0 in equation (4) to find an.

an=2404f(t)cosn(π2)tdt=1204f(t)cos(nπ2)tdt=12[01f(t)cos(nπ2)tdt+12f(t)cos(nπ2)tdt+24f(t)cos(nπ2)tdt]=12[0110tcos(nπ2)tdt+12(2010t)cos(nπ2)tdt+24(0)cos(nπ2)tdt]

Simplify the above equation to find an.

an=12[10(01tcos(nπ2)tdt)+1210(2t)cos(nπ2)tdt+0]=12[10(01tcos(nπ2)tdt)+10(12(2t)cos(nπ2)tdt)]=102[01tcos(nπ2)tdt+12(2t)cos(nπ2)tdt]

an=5[01tcos(nπ2)tdt+12(2t)cos(nπ2)tdt] (6)

Assume the following to reduce the equation (6).

x=01tcos(nπ2)tdt (7)

y=12(2t)cos(nπ2)tdt (8)

Substitute the equations (7) and (8) in equation (6) to find an.

an=5[x+y] (9)

Consider the following integration formula.

abudv=[uv]ababvdu (10)

Compare the equations (7) and (10) to simplify the equation (7).

u=t dv=cos(nπ2)tdtdu=dt v=sin(nπ2)t(nπ2)

Using the equation (10), the equation (7) can be reduced as,

x=01tcos(nπ2)tdt=[(t)sin(nπ2)t(nπ2)]0101sin(nπ2)t(nπ2)dt=[(1)sin(nπ2)(1)(nπ2)(0)sin(nπ2)(0)(nπ2)]1(nπ2)01sin(nπ2)tdt=[sin(nπ2)(nπ2)0]1(nπ2)[cos(nπ2)t(nπ2)]01

Simplify the above equation to find x.

x=sin(nπ2)(nπ2)+1(nπ2)2[cos(nπ2)(1)cos(nπ2)(0)]=2nπsin(nπ2)+1(n2π24)[cos(nπ2)cos(0°)]=2nπsin(nπ2)+4n2π2[cos(nπ2)1] {cos(0°)=1}

Compare the equations (8) and (10) to simplify the equation (8).

u=2t dv=cos(nπ2)tdtdu=0dt v=sin(nπ2)t(nπ2)du=dt

Using the equation (10), the equation (8) can be reduced as,

y=12(2t)cos(nπ2)tdt=[(2t)sin(nπ2)t(nπ2)]1212sin(nπ2)t(nπ2)(dt)=[((22)sin(nπ2)(2)(nπ2))((21)sin(nπ2)(1)(nπ2))]+1(nπ2)12sin(nπ2)tdt=[0(sin(nπ2)(nπ2))]+1(nπ2)[cos(nπ2)t(nπ2)]12

Simplify the above equation to find y.

y=sin(nπ2)(nπ2)1(nπ2)2[cos(nπ2)(2)cos(nπ2)(1)]=2nπsin(nπ2)1(n2π24)[cos(nπ)cos(nπ2)]=2nπsin(nπ2)4n2π2[cos(nπ)cos(nπ2)]

Substitute 2nπsin(nπ2)+4n2π2[cos(nπ2)1] for x and 2nπsin(nπ2)4n2π2[cos(nπ)cos(nπ2)] for y in equation (9) to find an.

an=5[2nπsin(nπ2)+4n2π2[cos(nπ2)1]2nπsin(nπ2)4n2π2[cos(nπ)cos(nπ2)]]=5[4n2π2cos(nπ2)4n2π24n2π2cos(nπ)+4n2π2cos(nπ2)]=5[8n2π2cos(nπ2)4n2π24n2π2cos(nπ)]=20π2[2n2cos(nπ2)1n2cos(nπ)1n2]

Substitute 4 for T and π2 for ω0 in equation (5) to find bn.

bn=2404f(t)sinn(π2)tdt=1204f(t)sin(nπ2)tdt=12[01f(t)sin(nπ2)tdt+12f(t)sin(nπ2)tdt+24f(t)sin(nπ2)tdt]=12[0110tsin(nπ2)tdt+12(2010t)sin(nπ2)tdt+24(0)sin(nπ2)tdt]

Simplify the above equation to find bn.

bn=12[10(01tsin(nπ2)tdt)+1210(2t)sin(nπ2)tdt+0]=12[10(01tsin(nπ2)tdt)+10(12(2t)sin(nπ2)tdt)]=102[01tsin(nπ2)tdt+12(2t)sin(nπ2)tdt]

bn=5[01tsin(nπ2)tdt+12(2t)sin(nπ2)tdt] (11)

Assume the following to reduce the equation (11).

a=01tsin(nπ2)tdt (12)

b=12(2t)sin(nπ2)tdt (13)

Substitute the equations (12) and (13) in equation (11) to find an.

bn=5[a+b] (14)

Compare the equations (12) and (10) to simplify the equation (12).

u=t dv=sin(nπ2)tdtdu=dt v=cos(nπ2)t(nπ2)

Using the equation (10), the equation (12) can be reduced as,

a=01tsin(nπ2)tdt=[(t)(cos(nπ2)t(nπ2))]0101(cos(nπ2)t(nπ2))dt=[(1)cos(nπ2)(1)(nπ2)(0)cos(nπ2)(0)(nπ2)]+1(nπ2)01cos(nπ2)tdt=[cos(nπ2)(nπ2)0]+1(nπ2)[sin(nπ2)t(nπ2)]01

Simplify the above equation to find a.

a=cos(nπ2)(nπ2)+1(nπ2)2[sin(nπ2)(1)sin(nπ2)(0)]=2nπcos(nπ2)+1(n2π24)[sin(nπ2)sin(0°)]=2nπcos(nπ2)+4n2π2[sin(nπ2)0] {sin(0°)=0}=2nπcos(nπ2)+4n2π2sin(nπ2)

Compare the equations (13) and (10) to simplify the equation (13).

u=2t dv=sin(nπ2)tdtdu=0dt v=cos(nπ2)t(nπ2)du=dt

Using the equation (10), the equation (13) can be reduced as,

b=12(2t)sin(nπ2)tdt=[(2t)(cos(nπ2)t(nπ2))]1212(cos(nπ2)t(nπ2))(dt)=[((22)cos(nπ2)(2)(nπ2))((21)cos(nπ2)(1)(nπ2))]1(nπ2)12cos(nπ2)tdt=[0(cos(nπ2)(nπ2))]1(nπ2)[sin(nπ2)t(nπ2)]12

Simplify the above equation to find b.

b=cos(nπ2)(nπ2)1(nπ2)2[sin(nπ2)(2)sin(nπ2)(1)]=2nπcos(nπ2)1(n2π24)[sin(nπ)sin(nπ2)]=2nπcos(nπ2)4n2π2[0sin(nπ2)] {sin(nπ)=0}=2nπcos(nπ2)+4n2π2sin(nπ2)

Substitute 2nπcos(nπ2)+4n2π2sin(nπ2) for a and 2nπcos(nπ2)+4n2π2sin(nπ2) for b in equation (14) to find bn.

bn=5[2nπcos(nπ2)+4n2π2sin(nπ2)+2nπcos(nπ2)+4n2π2sin(nπ2)]=5[8n2π2sin(nπ2)]=40n2π2sin(nπ2)

Substitute 2.5 for a0, 20π2[2n2cos(nπ2)1n2cos(nπ)1n2] for an, 40n2π2sin(nπ2) for bn, and π2 for ω0 in equation (2) to find f(t).

f(t)=2.5+n=1((20π2[2n2cos(nπ2)1n2cos(nπ)1n2])cosn(π2)t+(40n2π2sin(nπ2))sinn(π2)t)=2.5+n=1((20n2π2[2cos(nπ2)cos(nπ)1])cosn(π2)t+(40n2π2sin(nπ2))sinn(π2)t)=2.5+n=120n2π2((2cos(nπ2)cos(nπ)1)cos(nπ2)t+(2sin(nπ2))sin(nπ2)t)

Conclusion:

Thus, the Fourier series f(t) for the periodic waveform in Figure 17.57 is 2.5+n=120n2π2((2cos(nπ2)cos(nπ)1)cos(nπ2)t+(2sin(nπ2))sin(nπ2)t).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Determine the Complex Fourier series of the signal below:
g(x) equals      {0, -5≤x<0}                         {3, 0<x<5}   Find the expansion of the function above in a fourier series considering the period is ten.
1) Write down the fourier transform of some standard signals : A) Unit step function. B) Triangular pulse.

Chapter 17 Solutions

FUNDAMENTALS OF ELEC.CIRC.(LL) >CUSTOM<

Ch. 17.6 - Obtain the complex Fourier series expansion of...Ch. 17.7 - Prob. 12PPCh. 17.8 - Rework Example 17.14 if the low-pass filter is...Ch. 17 - Which of the following cannot be a Fourier series?...Ch. 17 - If ft=t,0t,ft+n=ft, the value of 0 is (a) 1 (b) 2...Ch. 17 - Which of the following are even functions? (a) t +...Ch. 17 - Prob. 4RQCh. 17 - Prob. 5RQCh. 17 - If f(t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t + ,...Ch. 17 - Prob. 7RQCh. 17 - The plot of |cn| versus n0 is called: (a) complex...Ch. 17 - Prob. 9RQCh. 17 - Prob. 10RQCh. 17 - Evaluate each of the following functions and see...Ch. 17 - Using MATLAB, synthesize the periodic waveform for...Ch. 17 - Given that Fourier coefficients a0, an, and bn of...Ch. 17 - Find the Fourier series expansion of the backward...Ch. 17 - Prob. 5PCh. 17 - Find the trigonometric Fourier series for f t =...Ch. 17 - Determine the Fourier series of the periodic...Ch. 17 - Using Fig. 17.51, design a problem to help other...Ch. 17 - Determine the Fourier coefficients an and bn of...Ch. 17 - Find the exponential Fourier series for the...Ch. 17 - Obtain the exponential Fourier series for the...Ch. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Find the quadrature (cosine and sine) form of the...Ch. 17 - Express the Fourier series...Ch. 17 - The waveform in Fig. 17.55(a) has the following...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Obtain the Fourier series for the periodic...Ch. 17 - Prob. 20PCh. 17 - Prob. 21PCh. 17 - Calculate the Fourier coefficients for the...Ch. 17 - Using Fig. 17.61, design a problem to help other...Ch. 17 - Prob. 24PCh. 17 - Determine the Fourier series representation of the...Ch. 17 - Find the Fourier series representation of the...Ch. 17 - For the waveform shown in Fig. 17.65 below, (a)...Ch. 17 - Obtain the trigonometric Fourier series for the...Ch. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - If the periodic current waveform in Fig. 17.73(a)...Ch. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - The full-wave rectified sinusoidal voltage in Fig....Ch. 17 - Prob. 42PCh. 17 - The voltage across the terminals of a circuit is...Ch. 17 - Prob. 44PCh. 17 - A series RLC circuit has R = 10 , L = 2 mH, and C...Ch. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48PCh. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - Find the exponential Fourier series for the...Ch. 17 - Obtain the exponential Fourier series expansion of...Ch. 17 - The Fourier series trigonometric representation of...Ch. 17 - Prob. 57PCh. 17 - Find the exponential Fourier series of a function...Ch. 17 - Prob. 59PCh. 17 - Obtain the complex Fourier coefficients of the...Ch. 17 - The spectra of the Fourier series of a function...Ch. 17 - Prob. 62PCh. 17 - Plot the amplitude spectrum for the signal f2(t)...Ch. 17 - Prob. 64PCh. 17 - Prob. 65PCh. 17 - Prob. 66PCh. 17 - Prob. 67PCh. 17 - Prob. 68PCh. 17 - Prob. 69PCh. 17 - Design a problem to help other students better...Ch. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Prob. 73PCh. 17 - Prob. 74PCh. 17 - Prob. 75PCh. 17 - Prob. 76PCh. 17 - Prob. 77CPCh. 17 - Prob. 78CPCh. 17 - Consider the full-wave rectified sinusoidal...Ch. 17 - Prob. 82CP
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Intro to FOURIER SERIES: The Big Idea; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=wmCIrpLBFds;License: Standard Youtube License