Physics for Scientists and Engineers with Modern Physics, Technology Update
Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 8P

(a)

To determine

The effect on the speed of the wave when it moves through air at 0°C .

(b)

To determine

The effect on the frequency of the sound wave when it moves through the air at 0°C .

(c)

To determine

The effect on the wavelength of the sound wave when the it moves through air at 0°C .

Blurred answer
Students have asked these similar questions
A water wave has a frequency of 5.0 Hz and a wavelength of 4.0 m. (a) What is the period of these waves? (b) What is the wave velocity? m/s
A wave is modeled by the wave function: y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)] 1. Find the wavelength, wave number, wave velocity, period and wave frequency. 2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s and the value of amplitude A=0.4m. 3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically. 4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results? Justify your answer. Is the material transported long wave displacement? If yes, how much material is transported over time interval from t = 0 to t = 5 s? Comment on your answer. We now consider two sound waves with different frequencies which have to the same amplitude. The wave functions of these waves are as follows: y1 (t) = A sin (2πf1t) y2 (t) = A sin (2πf2t) 5. Find the resultant wave function analytically. 6. Study how the resulting…
A wave is modeled by the wave function: y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)] 1. Find the wavelength, wave number, wave velocity, period and wave frequency. 2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s and the value of amplitude A=0.4m. 3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically. 4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results? Justify your answer. Is the material transported long wave displacement? If yes, how much material is transported over time interval from t = 0 to t = 5 s? Comment on your answer.

Chapter 17 Solutions

Physics for Scientists and Engineers with Modern Physics, Technology Update

Ch. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Prob. 11OQCh. 17 - Prob. 12OQCh. 17 - Prob. 13OQCh. 17 - Prob. 14OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Write an expression that describes the pressure...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - The power output of a certain public-address...Ch. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48APCh. 17 - Prob. 49APCh. 17 - Prob. 50APCh. 17 - Prob. 51APCh. 17 - Prob. 52APCh. 17 - Prob. 53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - Prob. 55APCh. 17 - Prob. 56APCh. 17 - Prob. 57APCh. 17 - Prob. 58APCh. 17 - Prob. 59APCh. 17 - Prob. 60APCh. 17 - Prob. 61APCh. 17 - Prob. 62APCh. 17 - Prob. 63APCh. 17 - Prob. 64APCh. 17 - Prob. 65APCh. 17 - Prob. 66APCh. 17 - Prob. 67APCh. 17 - Prob. 68APCh. 17 - Prob. 69APCh. 17 - Prob. 70APCh. 17 - Prob. 71CPCh. 17 - Prob. 72CPCh. 17 - Prob. 73CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY