Bundle: Physical Chemistry, 2nd + Student Solutions Manual
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
2nd Edition
ISBN: 9781285257594
Author: David W. Ball
Publisher: Cengage Learning
Question
Book Icon
Chapter 18, Problem 18.22E
Interpretation Introduction

Interpretation:

The vibrational partition function for NH3(g) at 250K, 500K, and 1000K are to be calculated. Whether the changes in qvib show the expected differences or not is to be stated.

Concept introduction:

A molecule is made up of atoms that are bonded together by covalent bonds. These bonds undergo a to and fro movement to vibrate. This vibration of the molecule contributes to the overall partition function of the system. The vibrational partition function of the polyatomic molecule is represented as,

qvib=j=13N611eθv,j/T

Where,

T represents the temperature (K).

θ v,j represents the jth vibrational temperature.

N represents the number of atoms present in the molecule.

Blurred answer
Students have asked these similar questions
2. Calculate the total molar entropy of HF at 298K. The vibrational frequency is 3960 cm-1 and the rotational constant is 20.6 cm-1.
2. The rotational partition function of an ethene molecule is 661 at 25°C. What is the rotational contribution to its molar entropy?
Part A Determine the total molecular partition function for gaseous H2O at 1000. K confined to a volume of 2.20 cm³. The rotational constants for water are BA = 27.8 cm, BB = 14.5 cm¯', and Bc = 9.95 cm. The vibrational frequencies are 1615, 3694, and 3802 cm-. The ground electronic state is nondegenerate. (Note: the Avogadro's constant NA = 6.022 × 1023 mol-1). Express your answer to three significant figures. Ην ΑΣφ qtotal = Submit Request Answer

Chapter 18 Solutions

Bundle: Physical Chemistry, 2nd + Student Solutions Manual

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,