EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 22P

A useful application of Lagrange interpolation is called a table look-up. As the name implies, this involves “looking-up” an intermediate value from a table. To develop such an algorithm, the table of x and f ( x ) values are first stored in a pair of one-dimensional arrays. These values are then passed to a function along with the x value you wish to evaluate. The function then performs two tasks. First, it loops down through the table until it finds the interval within which the unknown lies. Then it applies a technique like Lagrange interpolation to determine the proper f ( x ) value. Develop such a function using a cubic Lagrange polynomial to perform the interpolation. For intermediate intervals, this is a nice choice because the unknown will be located in the interval in the middle of the four points necessary to generate the cubic. For the first and last intervals, use a quadratic Lagrange polynomial. Also have your code detect when the user requests a value outside the range of x's. For such cases, the function should display an error message. Test your program for f ( x ) = ln x using data from x = 1 , 2 , ... , 10 .

Blurred answer
Students have asked these similar questions
We have designed a divide-and-conquer algorithm that runs on an input of size n. This algorithm works by spending O(1) time splitting the problem in half, then does a recursive call on each half, then spends O(n2 ) time combining the solutions to the recursive calls. On small inputs, the algorithm takes a constant amount of time. We want to see how long this algorithm takes, in terms of n to perform the task. (a) First, write a recurrence relation that corresponds to the time-complexity of the above divide and conquer algorithm. (b) Then, solve the relation to come with the worst-case time taken for the algorithm. Please show all work in depth.
What is the return type of angles function in MATLAB ?
8. What are the main stages of the FEM? 9. Make a sketch of a linear triangular finite element. Point the nodes and write the approximating polynomial. 10. Describe with one sentence what the shape functions in FEM are. 11. Special case of which method is the method of Galerkin? 12. What are the three main parts of a FEM program? 13. How can be increased the accuracy of the derivatives for linear finite elements in FEM postprocessor? 14. Specify three methods for force computation in FEM postprocessor.

Chapter 18 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Algebraic Complexity with Less Relations; Author: The University of Chicago;https://www.youtube.com/watch?v=ZOKM1JPz650;License: Standard Youtube License
Strassen's Matrix Multiplication - Divide and Conquer - Analysis of Algorithm; Author: Ekeeda;https://www.youtube.com/watch?v=UnpySHwAJsQ;License: Standard YouTube License, CC-BY
Trigonometric Equations with Complex Numbers | Complex Analysis #6; Author: TheMathCoach;https://www.youtube.com/watch?v=zdD8Dab1T2Y;License: Standard YouTube License, CC-BY