General Chemistry
General Chemistry
7th Edition
ISBN: 9780073402758
Author: Chang, Raymond/ Goldsby
Publisher: McGraw-Hill College
bartleby

Videos

Question
Book Icon
Chapter 18.3, Problem 1PE

(a)

Interpretation Introduction

Interpretation:

The change in entropy for the given vapour processes has to be identified.

Concept Introduction:

In thermodynamics, entropy refers to randomness of the system.  Second Law of thermodynamics states that the entropy of the universe is increasing.  That is, the system is always tending to have more disorders in it.  Let us consider the example of diffusion of gas molecule to understand the concept of entropy.  When a perfume bottle is opened the fragrance is immediately spread into the surroundings.  Inside the bottle the gas molecules are close to each other and entropy is less.  Once the bottle is opened the gas molecules escapes into the surroundings and have more disorderly arrangements.  The SI unit of entropy is JK-1.

(b)

Interpretation Introduction

Interpretation:

The change in entropy for the given supersaturated processes has to be identified.

Concept Introduction:

 In thermodynamics, entropy refers to randomness of the system. Second Law of thermodynamics states that the entropy of the universe is increasing.  That is, the system is always tending to have more disorders in it.  Let us consider the example of diffusion of gas molecule to understand the concept of entropy.  When a perfume bottle is opened the fragrance is immediately spread into the surroundings.  Inside the bottle the gas molecules are close to each other and entropy is less.  Once the bottle is opened the gas molecules escapes into the surroundings and have more disorderly arrangements.

The SI unit of entropy is JK-1.

(c)

Interpretation Introduction

Interpretation:

The change in entropy for the given gases processes has to be identified.

Concept Introduction:

 In thermodynamics, entropy refers to randomness of the system. Second Law of thermodynamics states that the entropy of the universe is increasing.  That is, the system is always tending to have more disorders in it.  Let us consider the example of diffusion of gas molecule to understand the concept of entropy.  When a perfume bottle is opened the fragrance is immediately spread into the surroundings.  Inside the bottle the gas molecules are close to each other and entropy is less.  Once the bottle is opened the gas molecules escapes into the surroundings and have more disorderly arrangements.

The SI unit of entropy is JK-1.

(d)

Interpretation Introduction

Interpretation:

The change in entropy for the given subliming processes has to be identified.

Concept Introduction:

 In thermodynamics, entropy refers to randomness of the system. Second Law of thermodynamics states that the entropy of the universe is increasing.  That is, the system is always tending to have more disorders in it.  Let us consider the example of diffusion of gas molecule to understand the concept of entropy.  When a perfume bottle is opened the fragrance is immediately spread into the surroundings.  Inside the bottle the gas molecules are close to each other and entropy is less.  Once the bottle is opened the gas molecules escapes into the surroundings and have more disorderly arrangements.

The SI unit of entropy is JK-1.

Blurred answer

Chapter 18 Solutions

General Chemistry

Ch. 18.6 - Practice Exercise Calculate the equilibrium...Ch. 18.6 - Prob. 2PECh. 18.6 - Prob. 3PECh. 18.6 - Prob. 1RCCh. 18 - Prob. 18.1QPCh. 18 - Prob. 18.2QPCh. 18 - Prob. 18.3QPCh. 18 - Prob. 18.4QPCh. 18 - Prob. 18.5QPCh. 18 - Prob. 18.7QPCh. 18 - Prob. 18.8QPCh. 18 - Prob. 18.9QPCh. 18 - 18.10 Arrange the following substances (1 mole...Ch. 18 - Prob. 18.11QPCh. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - 18.14 State whether the sign of the entropy...Ch. 18 - 18.15 Define free energy. What are its units? Ch. 18 - 18.16 Why is it more convenient to predict the...Ch. 18 - 18.17 Calculate ΔG° for the following reactions at...Ch. 18 - 18.18 Calculate ΔG° for the following reactions at...Ch. 18 - Prob. 18.19QPCh. 18 - Prob. 18.20QPCh. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - Prob. 18.23QPCh. 18 - 18.24 For the autoionization of water at...Ch. 18 - Prob. 18.25QPCh. 18 - Prob. 18.26QPCh. 18 - Prob. 18.27QPCh. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Prob. 18.30QPCh. 18 - Prob. 18.31QPCh. 18 - Prob. 18.32QPCh. 18 - Prob. 18.33QPCh. 18 - Prob. 18.34QPCh. 18 - Prob. 18.35QPCh. 18 - Prob. 18.36QPCh. 18 - Prob. 18.37QPCh. 18 - Prob. 18.38QPCh. 18 - Prob. 18.39QPCh. 18 - Prob. 18.40QPCh. 18 - Prob. 18.41QPCh. 18 - Prob. 18.42QPCh. 18 - Prob. 18.43QPCh. 18 - Prob. 18.44QPCh. 18 - Prob. 18.45QPCh. 18 - Prob. 18.46QPCh. 18 - 18.47 Calculate the equilibrium pressure of CO2...Ch. 18 - Prob. 18.48QPCh. 18 - 18.49 Referring to Problem 18.48, explain why the...Ch. 18 - Prob. 18.50QPCh. 18 - Prob. 18.51QPCh. 18 - Prob. 18.52QPCh. 18 - Prob. 18.53QPCh. 18 - Prob. 18.54QPCh. 18 - Prob. 18.55QPCh. 18 - 18.56 Crystallization of sodium acetate from a...Ch. 18 - Prob. 18.57QPCh. 18 - Prob. 18.58QPCh. 18 - Prob. 18.59QPCh. 18 - Prob. 18.60QPCh. 18 - Prob. 18.61QPCh. 18 - Prob. 18.62QPCh. 18 - Prob. 18.63QPCh. 18 - Prob. 18.64QPCh. 18 - Prob. 18.65QPCh. 18 - Prob. 18.66QPCh. 18 - Prob. 18.67QPCh. 18 - Prob. 18.68QPCh. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Prob. 18.72QPCh. 18 - 18.73 (a) Over the years there have been numerous...Ch. 18 - Prob. 18.74QPCh. 18 - 18.75 Shown here are the thermodynamic data for...Ch. 18 - Prob. 18.76QPCh. 18 - Prob. 18.77QPCh. 18 - Prob. 18.78QPCh. 18 - Prob. 18.79QPCh. 18 - Prob. 18.80QPCh. 18 - Prob. 18.81QPCh. 18 - Prob. 18.82QPCh. 18 - Prob. 18.83QPCh. 18 - 18.84 Large quantities of hydrogen are needed for...Ch. 18 - Prob. 18.85QPCh. 18 - Prob. 18.86QPCh. 18 - Prob. 18.87QPCh. 18 - Prob. 18.88QPCh. 18 - Prob. 18.89QPCh. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Prob. 18.92QPCh. 18 - Prob. 18.93QPCh. 18 - Prob. 18.94QPCh. 18 - Prob. 18.95QPCh. 18 - Prob. 18.96QPCh. 18 - Prob. 18.98QPCh. 18 - Prob. 18.100SPCh. 18 - Prob. 18.101SPCh. 18 - Prob. 18.102SPCh. 18 - Prob. 18.103SPCh. 18 - Prob. 18.104SPCh. 18 - Prob. 18.105SPCh. 18 - Prob. 18.106SPCh. 18 - Prob. 18.107SPCh. 18 - Prob. 18.108SPCh. 18 - 18.109 The boiling point of diethyl ether is...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY