Loose Leaf For Physics With Connect 2 Semester Access Card
Loose Leaf For Physics With Connect 2 Semester Access Card
3rd Edition
ISBN: 9781259679391
Author: Alan Giambattista
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19, Problem 50P

(a)

To determine

What is the magnetic force on each side of the loop if the magnetic field is 2.5T out of the page?

(a)

Expert Solution
Check Mark

Answer to Problem 50P

Magnetic force on the top side of loop is 0.75N in negative y direction, force on bottom side of loop is 0.75N in the positive y direction, force on left side of loop is 0.50N in the positive x direction, and force on the right side of the loop is 0.50N in the negative x direction.

Explanation of Solution

The schematic diagram showing the rectangular loop carrying current is given in figure 1 below. The direction of magnetic field is given to be out of the page. The four sides of the loop is also marked in the figure. Consider each side separately to find the magnitude and direction of force experienced in the loop.

Loose Leaf For Physics With Connect 2 Semester Access Card, Chapter 19, Problem 50P

Write the equation to find the force on the top side of the loop.

Ftop=ILtop×B (I)

Here, Ftop is the force on top side of loop, I is the current in the loop, Ltop is the length of the top side, B is the magnetic field vector

Write the equation to find the force on the bottom side of the loop.

Fbottom=ILbottom×B (II)

Here, Ftop is the force on bottom side of loop, I is the current in the loop, Ltop is the length of the bottom side, B is the magnetic field vector

Write the equation to find the force on the left side of the loop.

Fleft=ILleft×B (III)

Here, Fleft is the force on left side of loop, I is the current in the loop, Lleft is the length of the left side, B is the magnetic field vector

Write the equation to find the force on the right side of the loop.

Fright=ILright×B (IV)

Here, Fright is the force on right side of loop, I is the current in the loop, Lright is the length of the right side, B is the magnetic field vector

Conclusion

Substitute 1.0A for I , 0.300m right for Ltop , 2.5Tout of page for B in equation (I) to get Ftop

Ftop=(1.0A)(0.300mright)×(2.5Tout of page)=0.75N in the -y direction

Substitute 1.0A for I , 0.300m left for Ltop , 2.5Tout of page for B in equation (II) to get Fbottom

Fbottom=(1.0A)(0.300mleft)×(2.5Tout of page)=0.75N in the +y direction

Substitute 1.0A for I , 0.300m up for Ltop , 2.5Tout of page for B in equation (III) to get Fleft

Fleft=(1.0A)(0.300mup)×(2.5Tout of page)=0.50N in the +x direction

Substitute 1.0A for I , 0.300m down for Lright , 2.5Tout of page for B in equation (IV) to get Fright

Fright=(1.0A)(0.300mdown)×(2.5Tout of page)=0.50N in the -x direction

Therefore, Magnetic force on the top side of loop is 0.75N in negative y direction, force on bottom side of loop is 0.75N in the positive y direction, force on left side of loop is 0.50N in the positive x direction, and force on the right side of the loop is 0.50N in the negative x direction.

(b)

To determine

What is the net magnetic force on the loop?

(b)

Expert Solution
Check Mark

Answer to Problem 50P

The net magnetic force on the loop is 0N.

Explanation of Solution

The net force is the resultant sum of forces in the x and y directions.

Write the equation to find the net force in x direction.

Fnet,x=Fleft+Fright (I)

Here, Fnet,x is the net force in the x direction, Fleft is the force in the left side of loop, Fright is the force in the right side of the loop

Write the equation to find the net force in y direction.

Fnet,y=Ftop+Fbottom (II)

Here, Fnet,y is the net force in the y direction, Ftop is the force in the top side of loop, Fbottom is the force in the bottom side of the loop

Write the equation to find the sum of x and y component of forces.

Fnet=Fnet,x+Fnet,y (III)

Here, Fnet is the net force in the loop, Fnet,x is the net force in the x direction, Fnet,y is the net force in the y direction

Conclusion:

Substitute 0.50N for Fleft , and 0.50N for Fright in equation (I) to get Fnet,x

Fnet,x=0.50N-0.50N=0N

Substitute 0.75N for Fbottom , and 0.75N for Ftop in equation (II) to get Fnet,y

Fnet,y=0.75N-0.75N=0N

Substitute 0N for Fnet,x and Fnet,y in equation (III) to get Fnet

Fnet=0N+0N=0N

Therefore, The net magnetic force on the loop is 0N.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 19 Solutions

Loose Leaf For Physics With Connect 2 Semester Access Card

Ch. 19.6 - 19.6 Suppose the magnetic field in Fig. 19.28 were...Ch. 19.6 - 19.8 Magnetic Force on a Current-Carrying Wire A...Ch. 19.7 - CHECKPOINT 19.7 Suppose the coil of wire in Fig....Ch. 19.7 - Practice Problem 19.9 Torque on a Coil Starting...Ch. 19.8 - 19.8 What is the direction of the magnetic field...Ch. 19.8 - 19.10 Field Midway Between Two Wires Find the...Ch. 19.9 - Prob. 19.11PPCh. 19 - Prob. 1CQCh. 19 - Prob. 2CQCh. 19 - Prob. 3CQCh. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Prob. 6CQCh. 19 - Prob. 7CQCh. 19 - Prob. 8CQCh. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 11CQCh. 19 - Prob. 12CQCh. 19 - Prob. 13CQCh. 19 - Prob. 14CQCh. 19 - Prob. 15CQCh. 19 - Prob. 16CQCh. 19 - Prob. 17CQCh. 19 - Prob. 18CQCh. 19 - Prob. 19CQCh. 19 - Prob. 20CQCh. 19 - Prob. 21CQCh. 19 - Prob. 22CQCh. 19 - Prob. 23CQCh. 19 - Prob. 1MCQCh. 19 - Prob. 2MCQCh. 19 - Multiple-Choice Questions 1-4. In the figure, four...Ch. 19 - Prob. 4MCQCh. 19 - Prob. 5MCQCh. 19 - Prob. 6MCQCh. 19 - Prob. 7MCQCh. 19 - Prob. 8MCQCh. 19 - Multiple-Choice Questions 6-9. A wire carries...Ch. 19 - Prob. 10MCQCh. 19 - 11. The magnetic forces that two parallel wires...Ch. 19 - Prob. 12MCQCh. 19 - 1. At which point in the diagram is the magnetic...Ch. 19 - 2. Draw vector arrows to indicate the direction...Ch. 19 - Problems 3-6. Sketch some magnetic field lines for...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - Problems 3–6. Sketch some magnetic field lines for...Ch. 19 - 7. Find the magnetic force exerted on an electron...Ch. 19 - 8. Find the magnetic force exerted on a proton...Ch. 19 - 9. A uniform magnetic field points north; its...Ch. 19 - 10. A uniform magnetic field points vertically...Ch. 19 - Problems 11-14. Several electrons move at speed...Ch. 19 - 12. Find the magnetic force on the electron at...Ch. 19 - 12. Find the magnetic force on the electron at...Ch. 19 - Problems 11-14. Several electrons move at speed...Ch. 19 - 15. A magnet produces a 0.30 T field between its...Ch. 19 - 16. At a certain point on Earth’s surface in the...Ch. 19 - 17. A cosmic ray muon with the same charge as an...Ch. 19 - 18. In a CRT. electrons moving at 1.8 × 107 m/s...Ch. 19 - 19. A positron (q = +e) moves at 5.0 × 107 m/s in...Ch. 19 - 20. ✦ An electron moves with speed 2.0 × 105 m/s...Ch. 19 - 21. ✦ An electron moves with speed 2.0 × 105 m/s...Ch. 19 - 19.3 Charged Particle Moving Perpendicularly to a...Ch. 19 - 23. Six protons move (at speed v) in magnetic...Ch. 19 - 24. An electron moves at speed 8.0 × 105 m/s in a...Ch. 19 - 25. The magnetic field in a hospital’s cyclotron...Ch. 19 - 26. The magnetic field in a cyclotron used in...Ch. 19 - 27. The magnetic field in a cyclotron used to...Ch. 19 - 28. A beam of α particles (helium nuclei) is used...Ch. 19 - 29. A singly charged ion of unknown mass moves in...Ch. 19 - 30. In one type of mass spectrometer, ions having...Ch. 19 - 31. Natural carbon consists of two different...Ch. 19 - 32. After being accelerated through a potential...Ch. 19 - 33. A sample containing carbon (atomic mass 12 u),...Ch. 19 - Prob. 34PCh. 19 - 35. Show that the time for one revolution of a...Ch. 19 - 36. Crossed electric and magnetic fields are...Ch. 19 - 37. A current I = 40.0 A flows through a strip of...Ch. 19 - 38. In Problem 37, if the width of the strip is...Ch. 19 - 39. In Problem 37, the width of the strip is 3.5...Ch. 19 - 40. The strip in the diagram is used as a Hall...Ch. 19 - 41. A strip of copper 2.0 cm wide carries a...Ch. 19 - Prob. 42PCh. 19 - 43. An electromagnetic flowmeter is used to...Ch. 19 - 44. A charged particle is accelerated from rest...Ch. 19 - 45. A straight wire segment of length 0.60 m...Ch. 19 - 46. A straight wire segment of length 25 cm...Ch. 19 - 47. Parallel conducting tracks, separated by 2.0...Ch. 19 - 48. An electromagnetic rail gun can fire a...Ch. 19 - 49. A straight, stiff wire of length 1.00 m and...Ch. 19 - Prob. 50PCh. 19 - Prob. 51PCh. 19 - Prob. 52PCh. 19 - 53. ✦ A straight wire is aligned east-west in a...Ch. 19 - 54. A straight wire is aligned north-south in a...Ch. 19 - 55. In each of six electric motors, a cylindrical...Ch. 19 - 56. In an electric motor, a circular coil with...Ch. 19 - 57. In an electric motor, a coil with 100 turns of...Ch. 19 - 58. A square loop of wire of side 3.0 cm carries...Ch. 19 - 59. The intrinsic magnetic dipole moment of the...Ch. 19 - 60. In a simple model, the electron in a hydrogen...Ch. 19 - 61. A certain fixed length L of wire carries a...Ch. 19 - 62. Use the following method to show that the...Ch. 19 - 63. A square loop of wire with side 0.60 m carries...Ch. 19 - Prob. 64PCh. 19 - 65. Estimate the magnetic field at distances of...Ch. 19 - Prob. 66PCh. 19 - 67. Kieran measures the magnetic field of an...Ch. 19 - 68. Two wires each carry 10.0 A of current (in...Ch. 19 - Prob. 69PCh. 19 - 70. Point P is midway between two long, straight,...Ch. 19 - 70. Point P is midway between two long, straight,...Ch. 19 - Prob. 72PCh. 19 - Prob. 73PCh. 19 - 74. Two long straight wires carry the same amount...Ch. 19 - 75. In Problem 74, find the magnetic field at...Ch. 19 - 76. In Problem 74, find the magnetic field at...Ch. 19 - 77. A solenoid of length 0.256 m and radius 2.0 cm...Ch. 19 - 78. Two long straight parallel wires separated by...Ch. 19 - Prob. 79PCh. 19 - Prob. 80PCh. 19 - 81. You are designing the main solenoid for an MRI...Ch. 19 - 82. A solenoid has 4850 turns per meter and radius...Ch. 19 - 83. Find the magnetic field at the center of the...Ch. 19 - 84. Find the magnetic field at point P, the...Ch. 19 - Prob. 85PCh. 19 - Prob. 86PCh. 19 - Prob. 87PCh. 19 - 88. A number of wires carry currents into or out...Ch. 19 - 89. ✦ An infinitely long, thick cylindrical shell...Ch. 19 - 90. In this problem, use Ampère’s law to show...Ch. 19 - Prob. 91PCh. 19 - Prob. 92PCh. 19 - Prob. 93PCh. 19 - Prob. 94PCh. 19 - Prob. 95PCh. 19 - Prob. 96PCh. 19 - Prob. 97PCh. 19 - Prob. 98PCh. 19 - Prob. 99PCh. 19 - Prob. 100PCh. 19 - Prob. 101PCh. 19 - Prob. 102PCh. 19 - Prob. 103PCh. 19 - Prob. 104PCh. 19 - Prob. 105PCh. 19 - 106. Two conducting wires perpendicular to the...Ch. 19 - Prob. 107PCh. 19 - Prob. 108PCh. 19 - Prob. 109PCh. 19 - 110. A solenoid with 8500 turns per meter has...Ch. 19 - Prob. 111PCh. 19 - Prob. 112PCh. 19 - Prob. 113PCh. 19 - Prob. 114PCh. 19 - Prob. 115PCh. 19 - Prob. 116PCh. 19 - Prob. 117PCh. 19 - Prob. 118PCh. 19 - Prob. 119PCh. 19 - Prob. 120PCh. 19 - Prob. 121PCh. 19 - Prob. 122PCh. 19 - Prob. 123PCh. 19 - Prob. 124PCh. 19 - Prob. 125P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY