COLLEGE PHYSICS,V.1-W/ENH.WEBASSIGN
COLLEGE PHYSICS,V.1-W/ENH.WEBASSIGN
10th Edition
ISBN: 9781305411906
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 71AP

a)

To determine

The magnitude and direction of magnetic field at points A .

a)

Expert Solution
Check Mark

Answer to Problem 71AP

The magnetic field at point A will have a magnitude of 53μΤ and will point downward.

Explanation of Solution

Given info: The three conductors are parallel and carry equal currents of magnitude I=2.0A which is directed out of the page.

Explanation:

The arrangement of the wires is given by the following figure.

COLLEGE PHYSICS,V.1-W/ENH.WEBASSIGN, Chapter 19, Problem 71AP , additional homework tip  1

The magnetic field due to a straight current carrying wire is given by,

B=μ0I2πr       (1)

  • μ0 is the permeability of free space
  • I is the current in the wire
  • r is the distance of the point from the wire

Let B1 be the magnitude of the magnetic field due to the conductor at point 1 , Let B2 be the magnitude of the magnetic field due to the conductor at point 2 , Let B3 be the magnitude of the magnetic field due to the conductor at point 3 .

At point A the B1 will be,

B1=μ0I2π(a2)

At point A the B2 will be,

B2=μ0I2π(a2)

At point A the B2 will be,

B3=μ0I2π(3a)

The horizontal component of B1 and B2 will cancel out each other, where as the vertical component of the magnetic field get added up. The magnetic field at A will have only vertical component and will be directed downward.

The vertical component of the field will be,

Bver=B1cos45°+B2cos45°+B3=μ0I2π(a2)cos45°+μ0I2π(a2)cos45°+μ0I2π(3a)=μ0I2πa(2cos45°+13)

Substitute 2.0A for I , 4π×107TmA-1 for μ0 , 1.0cm for a to determine the vertical component of the net magnetic field at A ,

Bver=(4π×107TmA-1)(2.0A)2π(1.0cm)(2cos45°+13)=(4π×107TmA-1)(2.0A)2π(1.0×102m)(2cos45°+13)=53μΤ

Conclusion: The magnetic field at point A will have a magnitude of 53μΤ and will point downward.

b)

To determine

The magnitude and direction of magnetic field at points B .

b)

Expert Solution
Check Mark

Answer to Problem 71AP

The magnetic field at point B will have a magnitude of 20μΤ and will point downward on the plane of the page.

Explanation of Solution

Given info: The three conductors are parallel and carry equal currents of magnitude I=2.0A which is directed out of the page.

Explanation:

The arrangement of the wires is given by the following figure.

COLLEGE PHYSICS,V.1-W/ENH.WEBASSIGN, Chapter 19, Problem 71AP , additional homework tip  2

The magnetic field due to a straight current carrying wire is given by,

B=μ0I2πr       (1)

  • μ0 is the permeability of free space
  • I is the current in the wire
  • r is the distance of the point from the wire

Let B1 be the magnitude of the magnetic field due to the conductor at point 1 , Let B2 be the magnitude of the magnetic field due to the conductor at point 2 , Let B3 be the magnitude of the magnetic field due to the conductor at point 3 .

At point B the B1 will be,

B1=μ0I2π(a)

At point B the B2 will be,

B2=μ0I2π(a)

At point B the B3 will be,

B3=μ0I2π(2a)

At the point B , B1 and B2 will cancel out each other as they have equal magnitude and opposite direction. Only B3 will contribute to the magnetic field at point B and will be pointing downward on the plane of the paper.

The magnetic field at point B will be

B=B3=μ0I2π(2a)

Substitute 2.0A for I , 4π×107TmA-1 for μ0 , 1.0cm for a to determine the vertical component of the net magnetic field at A ,

B=(4π×107TmA-1)(2.0A)2π(2(1.0cm))=(4π×107TmA-1)(2.0A)2π(2(1.0×102m))=20μΤ

Conclusion: The magnetic field at point B will have a magnitude of 20μΤ and will point downward on the plane of the page.

c)

To determine

The magnitude and direction of magnetic field at point C .

c)

Expert Solution
Check Mark

Answer to Problem 71AP

The magnetic field at point C will be zero.

Explanation of Solution

Given info: The three conductors are parallel and carry equal currents of magnitude I=2.0A which is directed out of the page.

Explanation:

The arrangement of the wires is given by the following figure.

COLLEGE PHYSICS,V.1-W/ENH.WEBASSIGN, Chapter 19, Problem 71AP , additional homework tip  3

The magnetic field due to a straight current carrying wire is given by,

B=μ0I2πr       (1)

  • μ0 is the permeability of free space
  • I is the current in the wire
  • r is the distance of the point from the wire

Let B1 be the magnitude of the magnetic field due to the conductor at point 1 , Let B2 be the magnitude of the magnetic field due to the conductor at point 2 , Let B3 be the magnitude of the magnetic field due to the conductor at point 3 .

At point C the B1 will be,

B1=μ0I2π(a2)

At point C the B2 will be,

B2=μ0I2π(a2)

At point C the B3 will be,

B3=μ0I2π(a)

The horizontal component of B1 and B2 will cancel out each other, where as the vertical component of the magnetic field get added up. Considering the upward direction to be positive the net magnetic field will be

The vertical component of the field will be,

Bver=B1sin45°+B2sin45°B3=μ0I2π(a2)sin45°+μ0I2π(a2)sin45°μ0I2π(a)=μ0I2πa(2sin45°1)=0

Conclusion: The magnetic field at point C will be zero.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 19 Solutions

COLLEGE PHYSICS,V.1-W/ENH.WEBASSIGN

Ch. 19 - The following statements are related to the force...Ch. 19 - Will a nail be attracted to either pole of a...Ch. 19 - Figure CQ19.7 shows a coaxial cable carrying...Ch. 19 - A magnet attracts a piece of iron. The iron can...Ch. 19 - Figure CQ19.9 shows four positive charges, A, B,...Ch. 19 - Is the magnetic field created by a current loop...Ch. 19 - Suppose you move along a wire at the same speed as...Ch. 19 - Why do charged particles from outer space, called...Ch. 19 - A hanging Slinky toy is attached to a powerful...Ch. 19 - How can a current loop he used to determine the...Ch. 19 - Prob. 15CQCh. 19 - Figure CQ19.16 shows four permanent magnets, each...Ch. 19 - Two charged particles are projected in the same...Ch. 19 - Prob. 18CQCh. 19 - A magnetic field exerts a torque on each of the...Ch. 19 - Consider an electron near the Earths equator. In...Ch. 19 - (a) Find the direction of the force on a proton (a...Ch. 19 - Find the direction of the magnetic field acting on...Ch. 19 - Prob. 4PCh. 19 - A laboratory electromagnet produces a magnetic...Ch. 19 - Prob. 6PCh. 19 - Electrons and protons travel from the Sun to the...Ch. 19 - An oxygen ion (O+) moves in the xy-plane with a...Ch. 19 - A proton moving at 4.00 106 m/s through a...Ch. 19 - Sodium ions (Na+) move at 0.851 m/s through a...Ch. 19 - At the equator, near the surface of Earth, the...Ch. 19 - A proton travels with a speed of 5.02 106 m/s at...Ch. 19 - An electron moves in a circular path perpendicular...Ch. 19 - Figure P19.14a is a diagram of a device called a...Ch. 19 - Prob. 15PCh. 19 - A mass spectrometer is used to examine the...Ch. 19 - Jupiters magnetic field occupies a volume of space...Ch. 19 - Electrons in Earths upper atmosphere have typical...Ch. 19 - Prob. 19PCh. 19 - A proton (charge +e, mass mp), a deuteron (charge...Ch. 19 - A particle passes through a mass spectrometer as...Ch. 19 - In Figure P19.2, assume in each case the velocity...Ch. 19 - A current I = 15 A is directed along the positive...Ch. 19 - A straight wire carrying a 3.0-A current is placed...Ch. 19 - In Figure P19.3, assume in each case the velocity...Ch. 19 - A wire having a mass per unit length of 0.500 g/cm...Ch. 19 - A wire carries a current of 10.0 A in a direction...Ch. 19 - At a certain location, Earth has a magnetic field...Ch. 19 - A wire with a mass of 1.00 g/cm is placed on a...Ch. 19 - Mass m = 1.00 kg is suspended vertically at rest...Ch. 19 - Consider the system pictured in Figure P19.31. A...Ch. 19 - A metal rod of mass m carrying a current I glides...Ch. 19 - In Figure P19.33, the cube is 40.0 cm on each...Ch. 19 - A horizontal power line of length 58 m carries a...Ch. 19 - A wire is formed into a circle having a diameter...Ch. 19 - A current of 17.0 mA is maintained in a single...Ch. 19 - An eight-turn coil encloses an elliptical area...Ch. 19 - A current-carrying rectangular wire loop with...Ch. 19 - A 6.00-turn circular coil of wire is centered on...Ch. 19 - The orientation of small satellites is often...Ch. 19 - Along piece of wire with a mass of 0.100 kg and a...Ch. 19 - A rectangular loop has dimensions 0.500 m by 0.300...Ch. 19 - A lightning bolt may carry a current of 1.00 104...Ch. 19 - A long, straight wire going through the origin is...Ch. 19 - Neurons in our bodies carry weak currents that...Ch. 19 - In 1962 measurements of the magnetic field of a...Ch. 19 - A cardiac pacemaker can be affected by a static...Ch. 19 - The two wires shown in Figure P19.48 are separated...Ch. 19 - Prob. 49PCh. 19 - Two long, parallel wires carry currents of I1 =...Ch. 19 - Two long, parallel wires carry currents of I1 =...Ch. 19 - Prob. 52PCh. 19 - The magnetic field 40.0 cm away from a long,...Ch. 19 - Prob. 54PCh. 19 - Prob. 55PCh. 19 - Prob. 56PCh. 19 - A wire with a weight per unit length of 0.080 N/m...Ch. 19 - In Figure P19.58 the current in the long, straight...Ch. 19 - A long solenoid that has 1.00 103 turns uniformly...Ch. 19 - Prob. 60PCh. 19 - It is desired to construct a solenoid that will...Ch. 19 - Certain experiments must be performed in the...Ch. 19 - Ail electron is moving at a speed of 1.0 104 in/s...Ch. 19 - Figure P19.64 is a setup that can be used to...Ch. 19 - Two coplanar and concentric circular loops of wire...Ch. 19 - An electron moves in a circular path perpendicular...Ch. 19 - Prob. 67APCh. 19 - A 0.200-kg metal rod carrying a current of 10.0 A...Ch. 19 - Using an electromagnetic flowmeter (Fig. P19.69),...Ch. 19 - A uniform horizontal wire with a linear mass...Ch. 19 - Prob. 71APCh. 19 - Two long, parallel wires, each with a mass per...Ch. 19 - Protons having a kinetic energy of 5.00 MeV are...Ch. 19 - A straight wire of mass 10.0 g and length 5.0 cm...Ch. 19 - A 1.00-kg ball having net charge Q = 5.00 C is...Ch. 19 - Two long, parallel conductors separated by 10.0 cm...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning