BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203

Solutions

Chapter
Section
BuyFindarrow_forward

Finite Mathematics and Applied Cal...

7th Edition
Stefan Waner + 1 other
ISBN: 9781337274203
Textbook Problem

Sketch the graph of the quadratic functions in Exercises 1 and 2, indicating the coordinates of the vertex, the y-intercept, and the x-intercepts (if any).

f ( x ) = x 2 x 1

To determine

To graph: The function f(x)=x2x1 and indicate the coordinates of the vertex, the y-intercept, and x-intercept.

Explanation

Given Information:

The provided function is f(x)=x2x1.

Graph:

Consider the function,

f(x)=x2x1

Compare the equation f(x)=x2x1 with the standard function f(x)=ax2+bx+c and find the value of a,b and c.

The values are a=1, b=1 and c=1.

Here a>0, therefore the parabola will be upward facing.

To graph a quadratic function, four things should be calculated first.

(i) Vertex

(ii) x-intercept

(iii) y-intercept

(iv) Symmetry

Vertex: The formula of x-coordinate of a vertex is,

x=b2a

Substitute a=1 and b=1 in the equation x=b2a.

x=(1)2(1)=12

To find the y-coordinate of the vertex, substitute x=12 in the function f(x)=x2x1.

f(x)=(12)21(12)1=14+121=34

Thus, coordinates of the vertex are (12,34).

To calculate x-intercept of the function, substitute f(x)=0 in the equation f(x)=x2x1 and solve.

x2x1=0

Use the quadratic formula x=b±b24ac2a to find the roots of the equation

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-2.1 P-11ESect-2.1 P-12ESect-2.1 P-13ESect-2.1 P-14ESect-2.1 P-15ESect-2.1 P-16ESect-2.1 P-17ESect-2.1 P-18ESect-2.1 P-19ESect-2.1 P-20ESect-2.1 P-21ESect-2.1 P-22ESect-2.1 P-23ESect-2.1 P-24ESect-2.1 P-25ESect-2.1 P-26ESect-2.1 P-27ESect-2.1 P-28ESect-2.1 P-29ESect-2.1 P-30ESect-2.1 P-31ESect-2.1 P-32ESect-2.1 P-33ESect-2.1 P-34ESect-2.1 P-35ESect-2.1 P-36ESect-2.1 P-37ESect-2.1 P-38ESect-2.1 P-39ESect-2.1 P-40ESect-2.1 P-41ESect-2.1 P-42ESect-2.1 P-43ESect-2.1 P-44ESect-2.1 P-45ESect-2.1 P-46ESect-2.1 P-47ESect-2.1 P-48ESect-2.1 P-49ESect-2.1 P-50ESect-2.1 P-51ESect-2.1 P-52ESect-2.1 P-53ESect-2.1 P-54ESect-2.1 P-55ESect-2.1 P-56ESect-2.1 P-57ESect-2.1 P-58ESect-2.1 P-59ESect-2.1 P-60ESect-2.1 P-61ESect-2.1 P-62ESect-2.2 P-1ESect-2.2 P-2ESect-2.2 P-3ESect-2.2 P-4ESect-2.2 P-5ESect-2.2 P-6ESect-2.2 P-7ESect-2.2 P-8ESect-2.2 P-9ESect-2.2 P-10ESect-2.2 P-11ESect-2.2 P-12ESect-2.2 P-13ESect-2.2 P-14ESect-2.2 P-15ESect-2.2 P-16ESect-2.2 P-17ESect-2.2 P-18ESect-2.2 P-19ESect-2.2 P-20ESect-2.2 P-21ESect-2.2 P-22ESect-2.2 P-23ESect-2.2 P-24ESect-2.2 P-25ESect-2.2 P-26ESect-2.2 P-27ESect-2.2 P-28ESect-2.2 P-29ESect-2.2 P-30ESect-2.2 P-31ESect-2.2 P-32ESect-2.2 P-33ESect-2.2 P-34ESect-2.2 P-35ESect-2.2 P-36ESect-2.2 P-37ESect-2.2 P-38ESect-2.2 P-39ESect-2.2 P-40ESect-2.2 P-41ESect-2.2 P-42ESect-2.2 P-43ESect-2.2 P-44ESect-2.2 P-45ESect-2.2 P-46ESect-2.2 P-47ESect-2.2 P-48ESect-2.2 P-49ESect-2.2 P-50ESect-2.2 P-51ESect-2.2 P-52ESect-2.2 P-53ESect-2.2 P-54ESect-2.2 P-55ESect-2.2 P-56ESect-2.2 P-57ESect-2.2 P-58ESect-2.2 P-59ESect-2.2 P-60ESect-2.2 P-61ESect-2.2 P-62ESect-2.2 P-63ESect-2.2 P-64ESect-2.2 P-65ESect-2.2 P-66ESect-2.2 P-67ESect-2.2 P-68ESect-2.2 P-69ESect-2.2 P-70ESect-2.2 P-71ESect-2.2 P-72ESect-2.2 P-73ESect-2.2 P-74ESect-2.2 P-75ESect-2.2 P-76ESect-2.2 P-77ESect-2.2 P-78ESect-2.2 P-79ESect-2.2 P-80ESect-2.2 P-81ESect-2.2 P-82ESect-2.2 P-83ESect-2.2 P-84ESect-2.2 P-85ESect-2.2 P-86ESect-2.2 P-87ESect-2.2 P-88ESect-2.2 P-89ESect-2.2 P-90ESect-2.2 P-91ESect-2.2 P-92ESect-2.2 P-93ESect-2.2 P-94ESect-2.2 P-95ESect-2.2 P-96ESect-2.2 P-97ESect-2.2 P-98ESect-2.2 P-99ESect-2.2 P-100ESect-2.2 P-101ESect-2.2 P-102ESect-2.2 P-103ESect-2.2 P-104ESect-2.2 P-105ESect-2.2 P-106ESect-2.2 P-107ESect-2.2 P-108ESect-2.2 P-109ESect-2.2 P-110ESect-2.3 P-1ESect-2.3 P-2ESect-2.3 P-3ESect-2.3 P-4ESect-2.3 P-5ESect-2.3 P-6ESect-2.3 P-7ESect-2.3 P-8ESect-2.3 P-9ESect-2.3 P-10ESect-2.3 P-11ESect-2.3 P-12ESect-2.3 P-13ESect-2.3 P-14ESect-2.3 P-15ESect-2.3 P-16ESect-2.3 P-17ESect-2.3 P-18ESect-2.3 P-19ESect-2.3 P-20ESect-2.3 P-21ESect-2.3 P-22ESect-2.3 P-23ESect-2.3 P-24ESect-2.3 P-25ESect-2.3 P-26ESect-2.3 P-27ESect-2.3 P-28ESect-2.3 P-29ESect-2.3 P-30ESect-2.3 P-31ESect-2.3 P-32ESect-2.3 P-33ESect-2.3 P-34ESect-2.3 P-35ESect-2.3 P-36ESect-2.3 P-37ESect-2.3 P-38ESect-2.3 P-39ESect-2.3 P-40ESect-2.3 P-41ESect-2.3 P-42ESect-2.3 P-43ESect-2.3 P-44ESect-2.3 P-45ESect-2.3 P-46ESect-2.3 P-47ESect-2.3 P-48ESect-2.3 P-49ESect-2.3 P-50ESect-2.3 P-51ESect-2.3 P-52ESect-2.3 P-53ESect-2.3 P-54ESect-2.3 P-55ESect-2.3 P-56ESect-2.3 P-57ESect-2.3 P-58ESect-2.3 P-59ESect-2.3 P-60ESect-2.3 P-61ESect-2.3 P-62ESect-2.3 P-63ESect-2.3 P-64ESect-2.3 P-65ESect-2.3 P-66ESect-2.3 P-67ESect-2.3 P-68ESect-2.3 P-69ESect-2.3 P-70ESect-2.3 P-71ESect-2.3 P-72ESect-2.3 P-73ESect-2.3 P-74ESect-2.3 P-75ESect-2.3 P-76ESect-2.3 P-77ESect-2.4 P-1ESect-2.4 P-2ESect-2.4 P-3ESect-2.4 P-4ESect-2.4 P-5ESect-2.4 P-6ESect-2.4 P-7ESect-2.4 P-8ESect-2.4 P-9ESect-2.4 P-10ESect-2.4 P-11ESect-2.4 P-12ESect-2.4 P-13ESect-2.4 P-14ESect-2.4 P-15ESect-2.4 P-16ESect-2.4 P-17ESect-2.4 P-18ESect-2.4 P-19ESect-2.4 P-20ESect-2.4 P-21ESect-2.4 P-22ESect-2.4 P-23ESect-2.4 P-24ESect-2.4 P-25ESect-2.4 P-26ESect-2.4 P-27ESect-2.4 P-28ESect-2.4 P-29ESect-2.4 P-30ESect-2.4 P-31ESect-2.4 P-33ESect-2.4 P-34ESect-2.4 P-35ESect-2.4 P-36ESect-2.4 P-37ESect-2.4 P-38ESect-2.4 P-39ESect-2.4 P-40ESect-2.4 P-41ESect-2.4 P-42ESect-2.4 P-43ESect-2.4 P-44ECh-2 P-1RECh-2 P-2RECh-2 P-3RECh-2 P-4RECh-2 P-5RECh-2 P-6RECh-2 P-7RECh-2 P-8RECh-2 P-9RECh-2 P-10RECh-2 P-11RECh-2 P-12RECh-2 P-13RECh-2 P-14RECh-2 P-15RECh-2 P-16RECh-2 P-17RECh-2 P-18RECh-2 P-19RECh-2 P-20RECh-2 P-21RECh-2 P-22RECh-2 P-23RECh-2 P-24RECh-2 P-25RECh-2 P-26RECh-2 P-27RECh-2 P-28RECh-2 P-29RECh-2 P-30RECh-2 P-31RECh-2 P-32RECh-2 P-33RECh-2 P-35RECh-2 P-36RECh-2 P-37RECh-2 P-38RECh-2 P-39RECh-2 P-40RECh-2 P-41RECh-2 P-42RECh-2 P-43RECh-2 P-44RECh-2 P-45RECh-2 P-50RE

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 5-10, solve for y in terms of x. y(3)=4(2)113(x12)

Calculus: An Applied Approach (MindTap Course List)

Find the domain of each function. 20. (a) g(t)=10r100 (b) g(t) = sin(et 1)

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 722, evaluate the expression. 21. 161/4 81/3

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

41. .

Mathematical Applications for the Management, Life, and Social Sciences

Given 1 chain = 66 ft, change 561 ft to chains.

Elementary Technical Mathematics

Given: ABDC DB bisects ADC m1=36 Find: mA

Elementary Geometry For College Students, 7e

For y = 3x, y = a) 3x log3 e b) 3x ln 3 c) 3xlog3e d) 3xln3

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

The polar equation of the conic with eccentricity 3 and directrix x = −7 is:

Study Guide for Stewart's Multivariable Calculus, 8th

In Exercise 27-28, write an expression describing the shaded portions of the Venn diagram. a. b.

Finite Mathematics for the Managerial, Life, and Social Sciences