Organic Chemistry: Principles And Mechanisms
Organic Chemistry: Principles And Mechanisms
2nd Edition
ISBN: 9780393663549
Author: KARTY, Joel
Publisher: W. W. Norton and Company
Question
Book Icon
Chapter 21, Problem 21.14P
Interpretation Introduction

(a)

Interpretation:

The complete, detailed mechanism and the overall product for the given reaction is to be drawn.

Concept introduction:

The ester is hydrolyzed to the carboxylic acid under acidic conditions, so no strong base should appear in the mechanism. Water is the nucleophile, and the leaving group is a molecule of ethanol. Proton transfer steps are incorporated to avoid the appearance of strong bases.

Expert Solution
Check Mark

Answer to Problem 21.14P

The mechanism and product for the given reaction is:

Organic Chemistry: Principles And Mechanisms, Chapter 21, Problem 21.14P , additional homework tip  1

Explanation of Solution

In Step 1 of the mechanism, the acid protonates the ester’s carbonyl group, and in Step 2, water attacks the carbonyl C atom yielding a tetrahedral intermediate. Steps 3 and 4 are proton transfers. In Step 3, the O atom from the original nucleophile becomes uncharged, and thus is stabilized. In Step 4, the singly bonded O atom of the original ester gains a positive charge, which increases its leaving group ability. In Step 5, the leaving group departs and the C=O bond is reformed, and in Step 6, the carbonyl O is deprotonated yielding the overall uncharged product.

Conclusion

The complete, detailed mechanism and the overall product for the given reaction is drawn by acid-catalyzed ester hydrolysis.

Interpretation Introduction

(b)

Interpretation:

The complete, detailed mechanism and the overall product for the given reaction is to be drawn.

Concept introduction:

This is an acid-catalyzed transesterification, and a new ester is formed. Cyclohexanol acts as the nucleophile in this acid-catalyzed nucleophilic addition–elimination mechanism, and the leaving group is a molecule of methanol. Proton transfer steps are incorporated to avoid the appearance of strong bases.

Expert Solution
Check Mark

Answer to Problem 21.14P

The mechanism and product for the given reaction is:

Organic Chemistry: Principles And Mechanisms, Chapter 21, Problem 21.14P , additional homework tip  2

Explanation of Solution

In Step 1 of the mechanism, the acid protonates the ester’s carbonyl group, and in Step 2, Cyclohexanol attacks the carbonyl C atom, yielding a tetrahedral intermediate. Steps 3 and 4 are proton transfers. In Step 3, the O atom from the original nucleophile becomes uncharged, and thus is stabilized. In Step 4, the singly bonded O atom of the original ester gains a positive charge, which increases its leaving group ability. In Step 5, the leaving group departs and the C=O bond is reformed, and in Step 6, the carbonyl O is deprotonated, yielding the overall uncharged product.

Conclusion

The complete, detailed mechanism and the overall product for the given reaction is drawn by acid-catalyzed transesterification.

Interpretation Introduction

(c)

Interpretation:

The complete, detailed mechanism and the overall product for the given reaction is to be drawn.

Concept introduction:

This is an acid catalyzed amide hydrolysis which produces a carboxylic acid. Water acts as the nucleophile in this acid-catalyzed nucleophilic addition–elimination mechanism, and the leaving group is a molecule of amine. Proton transfer steps are incorporated to avoid the appearance of strong bases.

Expert Solution
Check Mark

Answer to Problem 21.14P

The mechanism and product for the given reaction is:

Organic Chemistry: Principles And Mechanisms, Chapter 21, Problem 21.14P , additional homework tip  3

Explanation of Solution

In Step 1 of the mechanism, the acid protonates the ester’s carbonyl group, and in Step 2, water attacks the carbonyl C atom, yielding a tetrahedral intermediate. Steps 3 and 4 are proton transfers. In Step 3, the O atom from the original nucleophile becomes uncharged, and thus is stabilized. In Step 4, the singly bonded N atom of the original ester gains a positive charge, which increases its leaving group ability. In Step 5, the leaving group departs and the C=O bond is reformed, and in Step 6, the carbonyl O is deprotonated, yielding the overall uncharged product.

Conclusion

The complete, detailed mechanism and the overall product for the given reaction is drawn by acid-catalyzed amide hydrolysis.

Interpretation Introduction

(d)

Interpretation:

The complete, detailed mechanism and the overall product for the given reaction is to be drawn.

Concept introduction:

This is an acid catalyzed ester hydrolysis which produces a carboxylic acid. Water acts as the nucleophile in this acid-catalyzed nucleophilic addition–elimination mechanism, and the leaving group is a molecule of alcohol. Proton transfer steps are incorporated to avoid the appearance of strong bases.

Expert Solution
Check Mark

Answer to Problem 21.14P

The mechanism and product for the given reaction is:

Organic Chemistry: Principles And Mechanisms, Chapter 21, Problem 21.14P , additional homework tip  4

Explanation of Solution

In Step 1 of the mechanism, the acid protonates the ester’s carbonyl group, and in Step 2, water attacks the carbonyl C atom, yielding a tetrahedral intermediate. Steps 3 and 4 are proton transfers. In Step 3, the O atom from the original nucleophile becomes uncharged, and thus is stabilized. In Step 4, the singly bonded O atom of the original ester gains a positive charge, which increases its leaving group ability. In Step 5, the leaving group departs and the C=O bond is reformed, and in Step 6, the carbonyl O is deprotonated, yielding the overall uncharged product.

Conclusion

The complete, detailed mechanism and the overall product for the given reaction is drawn by acid-catalyzed ester hydrolysis.

Interpretation Introduction

(e)

Interpretation:

The complete, detailed mechanism and the overall product for the given reaction is to be drawn.

Concept introduction:

This is Fischer esterification reaction. Ethanol acts as the nucleophile in this acid-catalyzed nucleophilic addition–elimination mechanism, and the leaving group is a water molecule. Proton transfer steps are incorporated to avoid the appearance of strong bases.

Expert Solution
Check Mark

Answer to Problem 21.14P

The mechanism and product for the given reaction is:

Organic Chemistry: Principles And Mechanisms, Chapter 21, Problem 21.14P , additional homework tip  5

Explanation of Solution

In Step 1 of the mechanism, the acid protonates the acid’s carbonyl group, and in Step 2, Ethanol attacks the carbonyl C atom, yielding a tetrahedral intermediate. Steps 3 and 4 are proton transfers. In Step 3, the O atom from the original nucleophile becomes uncharged, and thus is stabilized. In Step 4, the singly bonded O atom of the original ester gains a positive charge, which increases its leaving group ability. In Step 5, the leaving group departs and the C=O bond is reformed, and in Step 6, the carbonyl O is deprotonated, yielding the overall uncharged product.

Conclusion

The complete, detailed mechanism and the overall product for the given reaction is drawn by Fischer esterification reaction.

Interpretation Introduction

(f)

Interpretation:

The complete, detailed mechanism and the overall product for the given reaction is to be drawn.

Concept introduction:

This is an acid catalyzed amide hydrolysis which produces a carboxylic acid. Water acts as the nucleophile in this acid-catalyzed nucleophilic addition–elimination mechanism, and the leaving group is a molecule of amine. Proton transfer steps are incorporated to avoid the appearance of strong bases.

Expert Solution
Check Mark

Answer to Problem 21.14P

The mechanism and product for the given reaction is:

Organic Chemistry: Principles And Mechanisms, Chapter 21, Problem 21.14P , additional homework tip  6

Explanation of Solution

In Step 1 of the mechanism, the acid protonates the ester’s carbonyl group, and in Step 2, water attacks the carbonyl C atom, yielding a tetrahedral intermediate. Steps 3 and 4 are proton transfers. In Step 3, the O atom from the original nucleophile becomes uncharged, and thus is stabilized. In Step 4, the singly bonded N atom of the original ester gains a positive charge, which increases its leaving group ability. In Step 5, the leaving group departs and the C=O bond is reformed, and in Step 6, the carbonyl O is deprotonated, yielding the overall uncharged product.

Conclusion

The complete, detailed mechanism and the overall product for the given reaction is drawn by acid-catalyzed amide hydrolysis.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draw the complete, detailed mechanism and the products for each of the following reactions.
Please predict the product of the following reaction, and draw the complete, detailed mechanism.
please draw the complete, detailed mechanism and the product of this reaction.

Chapter 21 Solutions

Organic Chemistry: Principles And Mechanisms

Ch. 21 - Prob. 21.11PCh. 21 - Prob. 21.12PCh. 21 - Prob. 21.13PCh. 21 - Prob. 21.14PCh. 21 - Prob. 21.15PCh. 21 - Prob. 21.16PCh. 21 - Prob. 21.17PCh. 21 - Prob. 21.18PCh. 21 - Prob. 21.19PCh. 21 - Prob. 21.20PCh. 21 - Prob. 21.21PCh. 21 - Prob. 21.22PCh. 21 - Prob. 21.23PCh. 21 - Prob. 21.24PCh. 21 - Prob. 21.25PCh. 21 - Prob. 21.26PCh. 21 - Prob. 21.27PCh. 21 - Prob. 21.28PCh. 21 - Prob. 21.29PCh. 21 - Prob. 21.30PCh. 21 - Prob. 21.31PCh. 21 - Prob. 21.32PCh. 21 - Prob. 21.33PCh. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - Prob. 21.36PCh. 21 - Prob. 21.37PCh. 21 - Prob. 21.38PCh. 21 - Prob. 21.39PCh. 21 - Prob. 21.40PCh. 21 - Prob. 21.41PCh. 21 - Prob. 21.42PCh. 21 - Prob. 21.43PCh. 21 - Prob. 21.44PCh. 21 - Prob. 21.45PCh. 21 - Prob. 21.46PCh. 21 - Prob. 21.47PCh. 21 - Prob. 21.48PCh. 21 - Prob. 21.49PCh. 21 - Prob. 21.50PCh. 21 - Prob. 21.51PCh. 21 - Prob. 21.52PCh. 21 - Prob. 21.53PCh. 21 - Prob. 21.54PCh. 21 - Prob. 21.55PCh. 21 - Prob. 21.56PCh. 21 - Prob. 21.57PCh. 21 - Prob. 21.58PCh. 21 - Prob. 21.59PCh. 21 - Prob. 21.60PCh. 21 - Prob. 21.61PCh. 21 - Prob. 21.62PCh. 21 - Prob. 21.63PCh. 21 - Prob. 21.64PCh. 21 - Prob. 21.65PCh. 21 - Prob. 21.66PCh. 21 - Prob. 21.67PCh. 21 - Prob. 21.68PCh. 21 - Prob. 21.69PCh. 21 - Prob. 21.70PCh. 21 - Prob. 21.71PCh. 21 - Prob. 21.72PCh. 21 - Prob. 21.73PCh. 21 - Prob. 21.74PCh. 21 - Prob. 21.75PCh. 21 - Prob. 21.76PCh. 21 - Prob. 21.77PCh. 21 - Prob. 21.78PCh. 21 - Prob. 21.79PCh. 21 - Prob. 21.80PCh. 21 - Prob. 21.81PCh. 21 - Prob. 21.82PCh. 21 - Prob. 21.83PCh. 21 - Prob. 21.84PCh. 21 - Prob. 21.85PCh. 21 - Prob. 21.86PCh. 21 - Prob. 21.87PCh. 21 - Prob. 21.88PCh. 21 - Prob. 21.89PCh. 21 - Prob. 21.90PCh. 21 - Prob. 21.91PCh. 21 - Prob. 21.92PCh. 21 - Prob. 21.93PCh. 21 - Prob. 21.94PCh. 21 - Prob. 21.95PCh. 21 - Prob. 21.96PCh. 21 - Prob. 21.97PCh. 21 - Prob. 21.98PCh. 21 - Prob. 21.1YTCh. 21 - Prob. 21.2YTCh. 21 - Prob. 21.3YTCh. 21 - Prob. 21.4YTCh. 21 - Prob. 21.5YTCh. 21 - Prob. 21.6YTCh. 21 - Prob. 21.7YTCh. 21 - Prob. 21.8YTCh. 21 - Prob. 21.9YTCh. 21 - Prob. 21.10YTCh. 21 - Prob. 21.11YTCh. 21 - Prob. 21.12YT
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY