Physics for Scientists and Engineers with Modern Physics  Technology Update
Physics for Scientists and Engineers with Modern Physics Technology Update
9th Edition
ISBN: 9781305804487
Author: SERWAY
Publisher: Cengage
bartleby

Videos

Question
Book Icon
Chapter 22, Problem 31P

(a)

To determine

The temperature at exit.

(a)

Expert Solution
Check Mark

Answer to Problem 31P

The temperature at exit is 564K.

Explanation of Solution

Write the pressure volume relation in adiabatic expansion.

  PiViγ=PfVfγ                                                                                                              (I)

Here, Pi is the initial pressure, Pf is the final pressure, Vi is the initial volume, Vf is the final volume and γ is the adiabatic constant.

Write pressure volume temperature relation in adiabatic process.

  (PiViTi)γ=(PfVfTf)γ                                                                                                  (II)

Here, Ti is the initial temperature and Tf is the final temperature.

Divide equation (I) by (II) to get Tf.

  PiViγ(PiViTi)γ=PfVfγ(PfVfTf)γTiγPiγ1=TfγPfγ1Tfγ=TiγPfγ1Piγ1Tf=Ti(PfPi)γ1γ                                                                                              (III)

Write the expression to convert temperature in degree Celsius into Kelvin scale.

  T(K)=T(°C)+273                                                                                              (IV)

Here, T(K) is the temperature in Kelvin scale and T(°C) is the temperature in degree Celsius.

Conclusion:

For argon, value for adiabatic constant is 53.

Substitute 800°C for T(°C) in equation (IV) to get T(K).

  T(K)=800°C+273=1073K

Substitute 1073K for Ti, 53 for γ, 300kPa for Pf and 1.50MPa for Pi in equation (III) to get Tf.

  Tf=(1073K)(300kPa1000 Pa1 kPa1.50MPa106 Pa1 MPa)53153=(1073K)(300×103Pa1.50×106Pa)25=564K

Therefore, the temperature at exit is 564K.

(b)

To determine

The maximum power output of the engine.

(b)

Expert Solution
Check Mark

Answer to Problem 31P

The maximum power output of the engine is 212kW .

Explanation of Solution

Write the expression for the change in internal energy.

  ΔEint=nCVΔT                                                                                                         (V)

Here, ΔEint is the change in internal energy, n is the number of moles, CV is the specific heat capacity at constant volume and ΔT is the change in temperature.

Write the expression for the change in internal energy using first law of thermodynamics.

  ΔEint=QWeng                                                                                                      (VI)

Here, Q is the heat absorbed by argon gas and Weng is the work done by the engine.

For an adiabatic process total heat change will be zero.

Substitute 0 for Q in equation (VI) to get Weng.

  ΔEint=0WengWeng=ΔEint                                                                                                       (VII)

Substitute nCVΔT for ΔEint in equation (VII) to get Weng.

  Weng=nCVΔT                                                                                                    (VIII)

Write the expression for the power output of the turbine.

  P=WengΔt                                                                                                                (IX)

Here, Δt is the time.

Substitute nCVΔT for Weng in above equation to get P.

  P=nCVΔTΔt                                                                                                            (X)

Write the expression for n.

  n=m(kg)×1mol0.0399kg

Here, m(kg) is the mass in kilogram.

Write the expression for ΔT.

  ΔT=TfTi

Here, Ti is the initial temperature and Tf is the final temperature.

Substitute TfTi for ΔT and m(kg)×1mol0.0399kg for n in equation (X) to get P.

  P=(m(kg)×1mol0.0399kg)CV(TfTi)Δt                                                                 (XI)

Conclusion:

Substitute 80.0kg for m(kg), 32 for CV, 564K for Tf and 1073K for Ti and 1min for Δt in equation (XI) to get P.

  P=(80.0kg×1mol0.0399kg)32(564K1073K)1min×60s1min=2.12×105W×1kW1000W=212kW

Therefore, the maximum power output of the engine is 212kW .

(c)

To determine

The maximum efficiency of the engine.

(c)

Expert Solution
Check Mark

Answer to Problem 31P

The maximum efficiency of the engine is 0.475.

Explanation of Solution

Write the expression for the efficiency of Carnot engine.

  ec=1TcTh

Conclusion:

Substitute 564K for Tc and 1073K for Th in above equation to get maximum efficiency.

  ec=1564K1073K=0.475K

Therefore, the maximum efficiency of the engine is 0.475.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An ideal gas is compressed isothermally (constant temp) from a volume of Vi = 6.00 L to a volume of Vf = 3.00 L while in thermal contact with a heat reservoir at T = 295 K as in the figure below. During the compression process, the piston moves down a distance of d = 0.145 m under the action of an average external force of F = 20.5 kN. Find the thermal energy Q exchanged between the gas and the reservoir?
Ablower handles 2 kg/sec. of air at 30°C and consumes 40 kW power. The inlet and outlet velocities of air are 100 m/sec. and 150 m/sec. respectively. Find exit temperature assuming the process is adiabatic. (Tzke CP for air 1.005 ki/kgk)
Suppose a monatomic ideal gas is changed from state A to state D by one of the processes shown on the PV diagram.where P1 = 3.10 and P2 = 6.20.   Find the total work done on the gas if it follows the constant-volume path AB followed by the constant-pressure path BCD.

Chapter 22 Solutions

Physics for Scientists and Engineers with Modern Physics Technology Update

Ch. 22 - Prob. 5OQCh. 22 - Prob. 6OQCh. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Prob. 9OQCh. 22 - Prob. 10OQCh. 22 - The arrow OA in the PV diagram shown in Figure...Ch. 22 - The energy exhaust from a certain coal-fired...Ch. 22 - Discuss three different common examples of natural...Ch. 22 - Prob. 3CQCh. 22 - The first law of thermodynamics says you cant...Ch. 22 - Energy is the mistress of the Universe, and...Ch. 22 - (a) Give an example of an irreversible process...Ch. 22 - The device shown in Figure CQ22.7, called a...Ch. 22 - A steam-driven turbine is one major component of...Ch. 22 - Discuss the change in entropy of a gas that...Ch. 22 - Prob. 10CQCh. 22 - Prob. 11CQCh. 22 - (a) If you shake a jar full of jelly beans of...Ch. 22 - What are some factors that affect the efficiency...Ch. 22 - A particular heat engine has a mechanical power...Ch. 22 - The work done by an engine equals one-fourth the...Ch. 22 - A heat engine takes in 360 J of energy from a hot...Ch. 22 - A gun is a heat engine. In particular, it is an...Ch. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Suppose a heat engine is connected to two energy...Ch. 22 - Prob. 8PCh. 22 - During each cycle, a refrigerator ejects 625 kJ of...Ch. 22 - Prob. 10PCh. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - A freezer has a coefficient of performance of...Ch. 22 - Prob. 14PCh. 22 - One of the most efficient heat engines ever built...Ch. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - How much work does an ideal Carnot refrigerator...Ch. 22 - Prob. 23PCh. 22 - A power plant operates at a 32.0% efficiency...Ch. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - A heat engine operates in a Carnot cycle between...Ch. 22 - Suppose you build a two-engine device with the...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 22 - Prob. 44PCh. 22 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - What change in entropy occurs when a 27.9-g ice...Ch. 22 - Calculate the change in entropy of 250 g of water...Ch. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - A steam engine is operated in a cold climate where...Ch. 22 - Prob. 59APCh. 22 - Prob. 60APCh. 22 - Prob. 61APCh. 22 - In 1993, the U.S. government instituted a...Ch. 22 - Prob. 63APCh. 22 - Prob. 64APCh. 22 - Prob. 65APCh. 22 - Prob. 66APCh. 22 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 22 - Prob. 68APCh. 22 - Prob. 69APCh. 22 - Prob. 70APCh. 22 - Prob. 71APCh. 22 - Prob. 72APCh. 22 - Prob. 73APCh. 22 - A system consisting of n moles of an ideal gas...Ch. 22 - A heat engine operates between two reservoirs at...Ch. 22 - Prob. 76APCh. 22 - Prob. 77APCh. 22 - Prob. 78APCh. 22 - A sample of an ideal gas expands isothermally,...Ch. 22 - Prob. 80APCh. 22 - Prob. 81CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY