Physics for Scientists and Engineers, Vol 1 (Chapters 1-20)
Physics for Scientists and Engineers, Vol 1 (Chapters 1-20)
4th Edition
ISBN: 9780132273589
Author: Doug Giancoli, Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 23, Problem 20P

(III) Repeat Problem 19 assuming the charge density ρE increases as the square of the distance from the center of the sphere, and ρE = 0 at the center.

We assume the total charge is still Q, and let ρE = kr2. We evaluate the constant k by calculating the total charge, in the manner of Example 22-5.

Q = ρ E d V = 0 r 0 k r 2 ( 4 π r 2 d r ) = 4 5 k π r 0 5 k = 5 Q 4 π r 0 5

(a) The electric field outside a charged, spherically symmetric volume is the same as that for a point charge of the same magnitude of charge. Integrating the electric field from infinity to the radius of interest gives the potential at that radius.

E ( r r 0 ) = Q 4 π ε 0 r 2 ; V ( r r 0 ) = r Q 4 π ε 0 r 2 d r = Q 4 π ε 0 r | r = Q 4 π ε 0 r

(b) Inside the sphere the electric field is obtained from Gauss’s Law using the charge enclosed by a sphere of radius r.

4 π r 2 E = Q encl ε 0 ; Q encl = ρ E d V = 5 Q 4 π r 0 5 0 r r 2 ( 4 π r 2 d r ) = 5 Q 4 π r 0 5 4 5 π r 5 = Q r 5 r 0 5

Chapter 23, Problem 20P, (III) Repeat Problem 19 assuming the charge density E increases as the square of the distance from

E ( r < r 0 ) = Q encl 4 π ε 0 r 2 = Q r 3 4 π ε 0 r 0 5

Integrating the electric field from the surface to r < r0 gives the electric potential inside the sphere.

V ( r < r 0 ) = V ( r 0 ) r 0 r Q r 3 4 π ε 0 r 0 5 d r = Q 4 π ε 0 r 0 Q r 4 16 π ε 0 r 0 5 | r 0 r = Q 16 π ε 0 r 0 ( 5 r 4 r 0 4 )

(c) To plot, we first calculate V 0 = V ( r = r 0 ) = Q 4 π ε 0 r 0 and E 0 = E ( r = r 0 ) = Q 4 π ε 0 r 0 2 . Then we plot V/V0 and E/E0 as functions of r/r0.

For r < r 0 : V / V 0 = Q 16 π ε 0 r 0 ( 5 r 4 r 0 4 ) Q 4 π ε 0 r 0 = 1 4 ( 5 r 4 r 0 4 ) ; E / E 0 = Q r 3 4 π ε 0 r 0 5 Q 4 π ε 0 r 0 2 = r 3 r 0 3 For r > r 0 : V / V 0 = Q 4 π ε 0 r Q 4 π ε 0 r 0 = r 0 r ( r / r 0 ) 1 ; E / E 0 = Q 4 π ε 0 r 2 Q 4 π ε 0 r 0 2 = r 0 2 r 2 ( r / r 0 ) 2

Blurred answer
Students have asked these similar questions
In Fig. 21-20, a central particle of charge 2q is surrounded by a square array of charged particles, separated by either distance d or d/2 along the perimeter of the square. What are the magnitude and direc- tion of the net electrostatic force on the central particle due to the other particles? (Hint: Consideration of symmetry can greatly reduce the amount of work required here.)
Equation 23-11 (E = s/´0) gives the electric field at points near a charged conducting surface. Apply this equation to a conducting sphere of radius r and charge q, and show that the electric field outside the sphere is the same as the field of a charged particle located at the center of the sphere.
The cube in Figure 23-27 has edge length 1.40 m and is oriented as shown in a region of uniform electric field. Find the electric flux through the right face for the following electric fields, given in newtons per coulomb.

Chapter 23 Solutions

Physics for Scientists and Engineers, Vol 1 (Chapters 1-20)

Ch. 23 - Can a particle ever move from a region of low...Ch. 23 - If V = 0 at a point in space, must E=0? If E=0 at...Ch. 23 - When dealing with practical devices, we often take...Ch. 23 - Can two equipotential lines cross? Explain.Ch. 23 - Draw in a few equipotential lines in Fig, 2134b...Ch. 23 - What can you say about the electric field in a...Ch. 23 - A satellite orbits the Earth along a gravitational...Ch. 23 - Suppose the charged ring of Example 238 was not...Ch. 23 - Consider a metal conductor in the shape of a...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - A conducting sphere carries a charge Q and a...Ch. 23 - At a particular location, the electric field...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - If the electric field E is uniform in a region,...Ch. 23 - Is the electric potential energy of two unlike...Ch. 23 - (I) What potential difference is needed to stop an...Ch. 23 - (I) How much work does the electric field do in...Ch. 23 - (I) An electron acquires 5.25 1016 J of kinetic...Ch. 23 - (II) The work done by an external force to move a...Ch. 23 - (I) Thunderclouds typically develop voltage...Ch. 23 - (I) The electric field between two parallel plates...Ch. 23 - (I) What is the maximum amount of charge that a...Ch. 23 - (I) What is the magnitude of the electric field...Ch. 23 - (I) What minimum radius must a large conducting...Ch. 23 - (II) A manufacturer claims that a carpet will not...Ch. 23 - (II) A uniform electric field E=4.20N/Ci points in...Ch. 23 - (II) The electric potential of a very large...Ch. 23 - (II) The Earth produces an inwardly directed...Ch. 23 - (II) A 32-cm-diameter conducting sphere is charged...Ch. 23 - (II) An insulated spherical conductor of radius r1...Ch. 23 - (II) Determine the difference in potential between...Ch. 23 - (II) Suppose the end of your finger is charged....Ch. 23 - (II) Estimate the electric field in the membrane...Ch. 23 - (II) A nonconducting sphere of radius r0 carries a...Ch. 23 - (III) Repeat Problem 19 assuming the charge...Ch. 23 - (III) The volume charge density E within a sphere...Ch. 23 - (III) A hollow spherical conductor, carrying a net...Ch. 23 - (III) A very long conducting cylinder (length ) of...Ch. 23 - (I) A point charge Q creates an electric potential...Ch. 23 - (I) (a) What is the electric potential 0.50 1010...Ch. 23 - (a) Because of the inverse square nature of the...Ch. 23 - (II) +25C point charge is placed 6.0 cm from an...Ch. 23 - (II) Point a is 26 cm north of a 3.8 C point...Ch. 23 - (II) How much voltage must be used to accelerate a...Ch. 23 - (II) Two identical +5.5 C point charges are...Ch. 23 - (II) An electron starts from rest 42.5cm from a...Ch. 23 - (II) Two equal but opposite charges are separated...Ch. 23 - (II) A thin circular ring of radius R (as in Fig....Ch. 23 - (II) Three point charges are arranged at the...Ch. 23 - (II) A flat ring of inner radius R1 and outer...Ch. 23 - (II) A total charge Q is uniformly distributed on...Ch. 23 - (II) A 12.0-cm-radius thin ring carries a...Ch. 23 - (II) A thin rod of length 2 is centered on the x...Ch. 23 - (II) Determine the potential V(x) for points along...Ch. 23 - (III) The charge on the rod of Fig. 2331 has a...Ch. 23 - (III) Suppose the flat circular disk of Fig. 2315...Ch. 23 - (I) Draw a conductor in the shape of a football....Ch. 23 - (II) Equipotential surfaces are to be drawn 100 V...Ch. 23 - (II) A metal sphere of radius r0 = 0.44 m carries...Ch. 23 - (II) Calculate the electric potential due to a...Ch. 23 - (III) The dipole moment, considered as a vector,...Ch. 23 - (I) Show that the electric field of a single point...Ch. 23 - (I) What is the potential gradient just outside...Ch. 23 - (II) The electric potential between two parallel...Ch. 23 - () The electric potential in a region of space...Ch. 23 - (II) In a certain region of space, the electric...Ch. 23 - (II) A dust particle with mass of 0.050 g and a...Ch. 23 - (III) Use the results or Problems 38 and 39 to...Ch. 23 - (I) How much work must be done to bring three...Ch. 23 - (I) What potential difference is needed to give a...Ch. 23 - (I) What is the speed of (a) a 1.5-keV (kinetic...Ch. 23 - (II) Many chemical reactions release energy....Ch. 23 - (II) An alpha particle (which is a helium nucleus,...Ch. 23 - (II) Write the total electrostatic potential...Ch. 23 - (II) Four equal point charges, Q, are fixed at the...Ch. 23 - (II) An electron starting from rest acquires 1.33...Ch. 23 - (II) Determine the total electrostatic potential...Ch. 23 - (II) The liquid-drop model of the nucleus suggests...Ch. 23 - (III) Determine the total electrostatic potential...Ch. 23 - (I) Use the ideal gas as a model to estimate the...Ch. 23 - (III) Electrons are accelerated by 6.0kV in a CRT....Ch. 23 - (III) In a given CRT, electrons are accelerated...Ch. 23 - If the electrons in a single raindrop, 3.5 mm in...Ch. 23 - By rubbing a nonconducting material, a charge of...Ch. 23 - Sketch the electric field and equipotential lines...Ch. 23 - A +33 C point charge is placed 36 cm from an...Ch. 23 - At each corner of a cube of side there is a point...Ch. 23 - In a television picture tube (CRT), electrons are...Ch. 23 - Four point charges are located at the corners of a...Ch. 23 - In a photocell, ultraviolet (UV) light provides...Ch. 23 - An electron is accelerated horizontally from rest...Ch. 23 - Three charges are at the corners of an equilateral...Ch. 23 - Near the surface of the Earth there is an electric...Ch. 23 - A lightning flash transfers 4.0 C of charge and...Ch. 23 - Determine the components of the electric field. Ex...Ch. 23 - A nonconducting sphere of radius r2 contains a...Ch. 23 - A thin flat nonconducting disk, with radius R0 and...Ch. 23 - A Geiger counter is used to detect charged...Ch. 23 - A Van de Graaff generator (Fig. 2341) can develop...Ch. 23 - The potential in a region of space is given by V =...Ch. 23 - A charge q1 of mass m rests on the y axis at a...Ch. 23 - (II) A dipole is composed of a 1.0 nC charge at x...Ch. 23 - (II) A thin flat disk of radius R0 carries a total...Ch. 23 - (III) You are trying to determine an unknown...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY