(a) Interpretation: The minimum difference in the standard electrode potential needed to lower the concentration of metal M 1 to 2.00 × 10 − 4 M in a solution of 1.00 × 10 − 1 M is to be stated when M 2 is univalent and M 1 is divalent. Concept introduction: The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.

BuyFind

Principles of Instrumental Analysis

7th Edition
Douglas A. Skoog + 2 others
Publisher: Cengage Learning
ISBN: 9781305577213
BuyFind

Principles of Instrumental Analysis

7th Edition
Douglas A. Skoog + 2 others
Publisher: Cengage Learning
ISBN: 9781305577213

Solutions

Chapter 24, Problem 24.2QAP
Interpretation Introduction

(a)

Interpretation:

The minimum difference in the standard electrode potential needed to lower the concentration of metal M1 to 2.00×104M in a solution of 1.00×101M is to be stated when M2 is univalent and M1 is divalent.

Concept introduction:

The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.

Interpretation Introduction

(b)

Interpretation:

The minimum difference in the standard electrode potential needed to lower the concentration of metal M1 to 2.00×104M in a solution of 1.00×101M is to be statedwhen M1 and M2both are divalent.

Concept introduction:

The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.

Interpretation Introduction

(c)

Interpretation:

The minimum difference in the standard electrode potential needed to lower the concentration of metal M1 to 2.00×104M in a solution of 1.00×101M is to be statedwhen M2 is trivalent and M1 is univalent.

Concept introduction:

The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.

Interpretation Introduction

(d)

Interpretation:

The minimum difference in the standard electrode potential needed to lower the concentration of metal M1 to 2.00×104M in a solution of 1.00×101M is to be statedwhen M2 is divalent and M1 is univalent.

Concept introduction:

The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.

Interpretation Introduction

(e)

Interpretation:

The minimum difference in the standard electrode potential needed to lower the concentration of metal M1 to 2.00×104M in a solution of 1.00×101M is to be statedwhen M2 is divalent and M1 is trivalent.

Concept introduction:

The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.

Want to see the full answer?

Check out a sample textbook solution.

Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.