Fluid Mechanics, 8 Ed
Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 3.126P
To determine

(a)

The volume flow rate from the tank for no loss.

Expert Solution
Check Mark

Answer to Problem 3.126P

The volume flow rate from the tank for no loss is 0.2ft3/s.

Explanation of Solution

Given information:

The liquid in the tank is kerosene at 20°C temperature. The air pressure inside the tank is P1=20lbf/in2, and the pressure outside the tank is P2=14.7lbf/in2 . Height of the fluid element is 5ft, diameter at exit is 1in, and no head losses.

Concept Used:

The following figure shows the two sections where we apply Bernoulli equation.

Fluid Mechanics, 8 Ed, Chapter 3, Problem 3.126P

Figure-(1)

Write the expression for Bernoulli equation at section (1) and section (2).

P1ρg+V122g+z1=P2ρg+V222g+z2+hf

Substitute 0 for z2, and 0 for V1 and KV222g for hf in above equation.

P1ρg+z1=P2ρg+V222g+KV222gP1P2ρg+z1=V222g(K+1) ..... (I)

Here, the pressure at section (1) is P1, the pressure at section (2) is P2, the velocity of jet at section (1) is V1, and the velocity of jet at section (2) is V2.

Write the expression for the volume flow rate for the tank.

Q=AV2 ..... (II)

Here, area of the hole is Ahole, velocity of jet is Vjet.

Write the expression for the area of the hole.

Ajet=π4d2 ..... (III)

Here, the diameter of the hole is d.

Calculation:

Substitute 1in for d in Equation (III).

Ahole=π4×(1in)2=π4×1in2=0.7854in2

Refer to table A.3, “Properties of common liquids” to obtain the value of density of kerosene at 1atm pressure and 20°C as 804kg/m3.

Substitute 5ft for z1, 20lbf/in2 for P1, 14.7lbf/in2 for P2, 9.81m/s2 for g, and 0 for K in Equation (I).

20lbf/ in 214.7lbf/ in 2804kg/ m 3×9.81m/ s 2+5ft=V222×9.81m/ s 2(0+1)( 5.3 lbf/ in 2 7887.24 kg/ m 2 ×s 2 )( 4.45 kg×m/ s 2 1lbf)( 144 in 2 0.09 m 2 )+5ft=V2219.62m/ s 2( 3396.24 709.85m)( 1ft .3m)+5ft=( V 2 2 19.62m/ s 2 )( 0.3m 1ft)V2265.4ft/ s 2=15.9ft+5ft

V2265.4ft/ s 2=20.9ftV22=1366.86ft2/s2V2=1366.86 ft 2/ s 2V2=36.9ft/s

Substitute 0.7854in2 for A, and 36.9ft/s for V2 in Equation (II).

Q=0.7854in2×36.9ft/s=(0.7854 in2)( 1 ft 2 144 in 2 )(36.9ft/s)0.2ft3/s

Conclusion:

Thus, the volume flow rate from the tank for no loss is 0.2ft3/s.

To determine

(b)

The volume flow rate from the tank for pipe losses.

Expert Solution
Check Mark

Answer to Problem 3.126P

The volume flow rate from the tank for pipe losses is 0.085ft3/s.

Explanation of Solution

Given information:

The pipe losses in the form of head losses are given by hf=4.5V222g.

Concept Used:

Write the expression for the Bernoulli equation at section (1) and section (2).

P1P2ρg+z1=V222g(K+1)

Write the expression for volume flow rate for the tank.

Q=AV2

Write the expression for the area of the hole.

Ajet=π4d2

Calculation:

Substitute 5ft for z1, 20lbf/in2 for P1, 14.7lbf/in2 for P2, 9.81m/s2 for g, and 4.5 for K in Equation (I).

20lbf/ in 214.7lbf/ in 2804kg/ m 3×9.81m/ s 2+5ft=V222×9.81m/ s 2(4.5+1)( 5.3 lbf/ in 2 7887.24 kg/ m 2 ×s 2 )( 4.45 kg×m/ s 2 1lbf)( 144 in 2 0.09 m 2 )+5ft=5.5V2219.62m/ s 2( 3396.24 709.85m)( 1ft .3m)+5ft=( 5.5 V 2 2 19.62m/ s 2 )( 0.3m 1ft)V2211.89ft/ s 2=15.9ft+5ft

V2211.89ft/ s 2=20.9ftV22=248.501ft2/s2V2=248.501 ft 2/ s 2V2=15.76ft/s

Substitute 0.7854in2 for A, and 36.9ft/s for V2 in Equation (II).

Q=0.7854in2×15.76ft/s=(0.7854 in2)( 1 ft 2 144 in 2 )(15.76ft/s)0.085ft3/s

Conclusion:

Thus, the volume flow rate from the tank for pipe losses is 0.085ft3/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 3 Solutions

Fluid Mechanics, 8 Ed

Ch. 3 - Water flows from a faucet into a sink at 3 U.S....Ch. 3 - The pipe flow in Fig, P3.12 fills a cylindrical...Ch. 3 - The cylindrical container in Fig. P3.13 is 20 cm...Ch. 3 - The open tank in Fig. F3.14 contains water at 20°C...Ch. 3 - Water, assumed incompressible, flows steadily...Ch. 3 - P3.16 An incompressible fluid flows past an...Ch. 3 - Incompressible steady flow in the inlet between...Ch. 3 - Gasoline enters section 1 in Fig, P3.18 at 0.5...Ch. 3 - Water from a storm drain flows over an outfall...Ch. 3 - Oil (SG = 0.89) enters at section 1 in Fig, P3.20...Ch. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A thin layer of liquid, draining from an inclined...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - In some wind tunnels the test section is...Ch. 3 - A rocket motor is operati ng steadily, as shown in...Ch. 3 - In contrast to the liquid rocket in Fig. P3.34,...Ch. 3 - The jet pump in Fig. P3.36 injects water at U1 =...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - A wedge splits a sheet of 20°C water, as shown in...Ch. 3 - The water jet in Fig, P3,40 strikes normal to a...Ch. 3 - P3.41 In Fig. P3.41 the vane turns the water jet...Ch. 3 - Prob. 3.42PCh. 3 - P3.43 Water at 20°C flows through a 5-cm-diameter...Ch. 3 - P3.44 When a uniform stream flows past an immersed...Ch. 3 - Water enters and leaves the 6-cm-diameter pipe...Ch. 3 - When a jet strikes an inclined fixed plate, as in...Ch. 3 - A liquid jet of velocity Vjand diameter Djstrikes...Ch. 3 - The small boat in Fig. P3.48 is driven at a steady...Ch. 3 - The horizontal nozzle in Fig. P3.49 has D1 = 12 in...Ch. 3 - Prob. 3.50PCh. 3 - P3.51 A liquid jet of velocity Vj and area Aj...Ch. 3 - A large commercial power washer delivers 21...Ch. 3 - Prob. 3.53PCh. 3 - For the pipe-flow-reducing section of Fig. P3.54,...Ch. 3 - In Fig. P3.55 the jet strikes a vane that moves to...Ch. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - P3.62 Water at 20°C exits to the standard...Ch. 3 - Water flows steadily through the box in Fig....Ch. 3 - The 6-cm-diameter 20°C water jet in Fig. P3.64...Ch. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - P3.69 A uniform rectangular plate, 40 cm long and...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - When immersed in a uniform stream, a thick...Ch. 3 - P3.73 A pump in a tank of water at 20°C directs a...Ch. 3 - P3.74 Water at 20°C flows down through a vertical,...Ch. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - P3.79 The Saturn V rocket in the chapter opener...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Air at 20°C and 1 atm flows in a 25-cm-diameter...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - A water jet 3 in in diameter strikes a concrete...Ch. 3 - P3.95 A tall water tank discharges through a...Ch. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99PCh. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Suppose that the solid-propellant rocket of Prob....Ch. 3 - A rocket is attached to a rigid horizontal rod...Ch. 3 - Extend Prob. P3.104 to the case where the rocket...Ch. 3 - Actual airflow past a parachute creates a variable...Ch. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - Prob. 3.111PCh. 3 - A jet of alcohol strikes the vertical plate in...Ch. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - P3.116 For the container of Fig. P3.116 use...Ch. 3 - Water at 20°C, in the pressurized tank of Fig....Ch. 3 - P3.118 Bernoulli's 1738 treatise Hydrodynamica...Ch. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - The air-cushion vehicle in Fig, P3.123 brings in...Ch. 3 - Prob. 3.124PCh. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - P3.130 In Fig. P3.130 the fluid is gasoline at...Ch. 3 - Prob. 3.131PCh. 3 - Prob. 3.132PCh. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - Air, assumed frictionless, flows through a tube,...Ch. 3 - In Fig. P3.137 the piston drives water at 20°C....Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - Prob. 3.140PCh. 3 - Prob. 3.141PCh. 3 - Prob. 3.142PCh. 3 - Prob. 3.143PCh. 3 - Prob. 3.144PCh. 3 - Prob. 3.145PCh. 3 - The pump in Fig. P3.146 draws gasoline at 20°C...Ch. 3 - The very large water tank in Fig. P3.147 is...Ch. 3 - Prob. 3.148PCh. 3 - P3.149 The horizontal lawn sprinkler in Fig....Ch. 3 - Prob. 3.150PCh. 3 - Prob. 3.151PCh. 3 - Prob. 3.152PCh. 3 - Prob. 3.153PCh. 3 - Prob. 3.154PCh. 3 - Prob. 3.155PCh. 3 - Prob. 3.156PCh. 3 - Prob. 3.157PCh. 3 - Prob. 3.158PCh. 3 - Prob. 3.159PCh. 3 - Prob. 3.160PCh. 3 - Prob. 3.161PCh. 3 - The waterwheel in Fig. P3.162 is being driven at...Ch. 3 - Prob. 3.163PCh. 3 - Prob. 3.164PCh. 3 - Prob. 3.165PCh. 3 - A power plant on a river, as in Fig. P3.166, must...Ch. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - P3.169 When the pump in Fig. P3.169 draws 220 m3/h...Ch. 3 - Prob. 3.170PCh. 3 - P3.171 Consider a turbine extracting energy from a...Ch. 3 - Prob. 3.172PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177PCh. 3 - Prob. 3.178PCh. 3 - Prob. 3.179PCh. 3 - Prob. 3.180PCh. 3 - Prob. 3.181PCh. 3 - Prob. 3.182PCh. 3 - Prob. 3.183PCh. 3 - The large turbine in Fig. P3.184 diverts the river...Ch. 3 - Prob. 3.185PCh. 3 - Prob. 3.1WPCh. 3 - Prob. 3.2WPCh. 3 - Prob. 3.3WPCh. 3 - Prob. 3.4WPCh. 3 - W3.5 Consider a long sewer pipe, half full of...Ch. 3 - Put a table tennis ball in a funnel, and attach...Ch. 3 - How does a siphon work? Are there any limitations...Ch. 3 - Prob. 3.1FEEPCh. 3 - Prob. 3.2FEEPCh. 3 - In Fig, FE3.1 water exits from a nozzle into...Ch. 3 - Prob. 3.4FEEPCh. 3 - Prob. 3.5FEEPCh. 3 - FE3.6 A fireboat pump delivers water to a...Ch. 3 - A fireboat pump delivers water to a vertical...Ch. 3 - Prob. 3.8FEEPCh. 3 - Water flowing in a smooth 6-cm-diameter pipe...Ch. 3 - Prob. 3.10FEEPCh. 3 - In a certain industrial process, oil of density ...Ch. 3 - Prob. 3.2CPCh. 3 - Prob. 3.3CPCh. 3 - Prob. 3.4CPCh. 3 - Prob. 3.5CPCh. 3 - Prob. 3.1DP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Surface Finish Measurement - Skidded VS. Skidless Surface Roughness Measurement; Author: Mitutoyo America Corporation;https://www.youtube.com/watch?v=X7jCTIwVs80;License: Standard Youtube License