Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 30, Problem 30.1QQ

Consider the magnetic field due to the current in the wire shown in Figure 29.2. Rank the points A, B, and C in terms of magnitude of the magnetic field that is due to the current in just the length element d s shown from greatest to least.

Figure 29.2 (Quick Quiz 29.1) Where is the magnetic field due to the current element the greatest?

Chapter 30, Problem 30.1QQ, Consider the magnetic field due to the current in the wire shown in Figure 29.2. Rank the points A,

Expert Solution & Answer
Check Mark
To determine
The rank of the points A , B and C from greatest to least in terms of magnitude of the magnetic field that is due to the current in just the length element ds .

Answer to Problem 30.1QQ

The rank of the points A , B and C from greatest to least in terms of magnitude of the magnetic field that is due to the current in just the length element ds is B>C>A .

Explanation of Solution

Formula to calculate the magnetic field due to the current flow through a small length element is,

B=μ0I4πds×r^r2 (1)

Here,

μ0 is the absolute permeability.

I is the current flow in the conductor.

ds is the small length elements.

r is the distance between the points to the conductor.

From the equation (1), it is clear that the magnetic field due to the current flow is inversely proportional to the square of the distance between the point to the small length element and directly proportional to the cross product of the vectors ds and r^ .

The point A lies in the direction of the small length element of the wire. So, the angle between the vectors ds and r^ for point A is zero. Hence, the magnitude of the magnetic field at point A is zero because sin0°=0 .

The distance between the point C and the small length element of the wire is more than the distance between the point B and the small length element of the wire. Since the field decrease as the points moves away from the small length element hence the magnitude of field at point C is less than the magnitude of field at point B .

Thus, from the greatest to least order the magnetic field is maximum at point B , then at point C and then at point A .

Conclusion:

Therefore, the rank of the points A , B and C from greatest to least in terms of magnitude of the magnetic field that is due to the current in just the length element ds are B>C>A .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An ion source is producing 6Li ions, which have charge e and mass 9.99* 10-27 kg. The ions are accelerated by a potential difference of 10 kV and pass horizontally into a region in which there is a uniform vertical magnetic field of magnitude B=1.2 T. Calculate the strength of the smallest electric field, to be set up over the same region, that will allow the 6Li ions to pass through undeflected.
An ion source is producing 6Li ions, which have charge +e and mass 9.99 × 10-27 kg. The ions are accelerated by a potential difference of 12 kV and pass horizontally into a region in which there is a uniform vertical magnetic field of magnitude B = 1.4 T. Calculate the strength of the smallest electric field, to be set up over the same region, that will allow the 6Li ions to pass through undeflected.
In the figure, an electron accelerated from rest through potential difference V1=1.26 kV enters the gap between two parallel plates having separation d = 19.6 mm and potential difference V2= 52.4 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? I need this in units of mT.

Chapter 30 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)

Ch. 30 - A long, vertical, metallic wire carries downward...Ch. 30 - Suppose you are facing a tall makeup mirror on a...Ch. 30 - A long, straight wire carries a current I (Fig....Ch. 30 - Prob. 30.9OQCh. 30 - Consider the two parallel wires carrying currents...Ch. 30 - What creates a magnetic Hold? More than one answer...Ch. 30 - A long solenoid with closely spaced turns carries...Ch. 30 - A uniform magnetic field is directed along the x...Ch. 30 - Rank the magnitudes of the following magnetic...Ch. 30 - Solenoid A has length L and N turns, solenoid B...Ch. 30 - Is the magnetic field created by a current loop...Ch. 30 - One pole of a magnet attracts a nail. Will the...Ch. 30 - Prob. 30.3CQCh. 30 - A hollow copper tube carries a current along its...Ch. 30 - Imagine you have a compass whose needle can rotate...Ch. 30 - Prob. 30.6CQCh. 30 - A magnet attracts a piece of iron. The iron can...Ch. 30 - Why does hitting a magnet with a hammer cause the...Ch. 30 - The quantity B ds in Amperes law is called...Ch. 30 - Figure CQ30.10 shows four permanent magnets, each...Ch. 30 - Explain why two parallel wires carrying currents...Ch. 30 - Consider a magnetic field that is uniform in...Ch. 30 - Review. In studies of the possibility of migrating...Ch. 30 - In each of parts (a) through (c) of Figure P30.2....Ch. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Prob. 30.5PCh. 30 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 30 - Prob. 30.7PCh. 30 - A conductor consists of a circular loop of radius...Ch. 30 - Two long, straight, parallel wires carry currents...Ch. 30 - Prob. 30.10PCh. 30 - Prob. 30.11PCh. 30 - Consider a flat, circular current loop of radius R...Ch. 30 - A current path shaped as shown in Figure P30.13...Ch. 30 - One long wire carries current 30.0 A to the left...Ch. 30 - Prob. 30.15PCh. 30 - In a long, .straight, vertical lightning stroke,...Ch. 30 - Determine the magnetic field (in terms of I, a,...Ch. 30 - Prob. 30.18PCh. 30 - Determine the magnetic field (in terms of I, a,...Ch. 30 - Two long, parallel wires carry currents of I1 =...Ch. 30 - Two long, parallel conductors, separated by 10.0...Ch. 30 - Prob. 30.22PCh. 30 - Prob. 30.23PCh. 30 - Prob. 30.24PCh. 30 - Prob. 30.25PCh. 30 - In Figure P30.25, the current in the long,...Ch. 30 - Two long, parallel wires are attracted to each...Ch. 30 - Why is the following situation impossible? Two...Ch. 30 - Prob. 30.29PCh. 30 - Niobium metal becomes a superconductor when cooled...Ch. 30 - Figure P30.31 Is a cross-sectional view of a...Ch. 30 - The magnetic coils of a tokamak fusion reactor are...Ch. 30 - A long, straight wire lies on a horizontal table...Ch. 30 - An infinite sheet of current lying in the yz plane...Ch. 30 - The magnetic field 40.0 cm away from a long,...Ch. 30 - A packed bundle of 100 long, straight, insulated...Ch. 30 - Prob. 30.37PCh. 30 - Prob. 30.38PCh. 30 - Prob. 30.39PCh. 30 - A certain superconducting magnet in the form of a...Ch. 30 - A long solenoid that has 1 000 turns uniformly...Ch. 30 - You are given a certain volume of copper from...Ch. 30 - A single-turn square loop of wire, 2.00 cm on each...Ch. 30 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 30 - It is desired to construct a solenoid that will...Ch. 30 - Prob. 30.46PCh. 30 - A cube of edge length l=2.50 cm is positioned as...Ch. 30 - A solenoid of radius r = 1.25 cm and length =...Ch. 30 - The magnetic moment of the Earth is approximately...Ch. 30 - At saturation, when nearly all the atoms have...Ch. 30 - A 30.0-turn solenoid of length 6.00 cm produces a...Ch. 30 - Prob. 30.52APCh. 30 - Suppose you install a compass on the center of a...Ch. 30 - Why is the following situation impossible? The...Ch. 30 - A nonconducting ring of radius 10.0 cm is...Ch. 30 - Prob. 30.56APCh. 30 - Prob. 30.57APCh. 30 - A circular coil of five turns and a diameter of...Ch. 30 - A very large parallel-plate capacitor has uniform...Ch. 30 - Two circular coils of radius R, each with N turns,...Ch. 30 - Prob. 30.61APCh. 30 - Two circular loops are parallel, coaxial, and...Ch. 30 - Prob. 30.63APCh. 30 - Prob. 30.64APCh. 30 - As seen in previous chapters, any object with...Ch. 30 - Review. Rail guns have been suggested for...Ch. 30 - Prob. 30.67APCh. 30 - An infinitely long, straight wire carrying a...Ch. 30 - Prob. 30.69CPCh. 30 - We have seen that a long solenoid produces a...Ch. 30 - Prob. 30.71CPCh. 30 - Prob. 30.72CPCh. 30 - A wire carrying a current I is bent into the shape...Ch. 30 - Prob. 30.74CPCh. 30 - Prob. 30.75CPCh. 30 - Prob. 30.76CPCh. 30 - The magnitude of the force on a magnetic dipole ...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY