BuyFind*arrow_forward*

8th Edition

James Stewart

Publisher: Cengage Learning

ISBN: 9781305270336

Chapter 3.1, Problem 73E

Textbook Problem

47 views

(a) For what values of *x* is the function *f*(*x*) = |*x*^{2} – 9| differentiable? Find a formula for *f'.*

(b) Sketch the graphs of *f* and *f'.*

(a)

To determine

**To find:** The value of *x* if the given function is differentiable and obtain the formula for

**Given**:

The function

**Derivative rules**:

(1) Power Rule:

(2) Difference Rule:

**Calculation**:

Rewrite the function

Obtain the left hand derivative of

That is, compute

Since

Simplify the numerators terms,

Thus, the value of the left hand derivative of

Obtain the right hand derivative of

That is, compute

Since

Divide the numerator and denominator by *h*.

Thus, the value of the right hand derivative of

Since the value of the left hand derivative of

Therefore, the function

Obtain the left hand derivative of

That is, compute

Since

(b)

To determine

**To sketch:** The function

Single Variable Calculus: Early Transcendentals

Show all chapter solutions

Ch. 3.1 - (a) How is the number e defined? (b) Use a...Ch. 3.1 - (a) Sketch, by hand, the graph of the function...Ch. 3.1 - Differentiate the function. f(x) = 240Ch. 3.1 - Differentiate the function. f(x) = e5Ch. 3.1 - Differentiate the function. f(x) = 5.2x + 2.3Ch. 3.1 - Differentiate the function. g(x)=74x23x+12Ch. 3.1 - Differentiate the function. f(t) = 2t3 3t2 4tCh. 3.1 - Differentiate the function. f(t) = 1.4t5 2.5t2+...Ch. 3.1 - Differentiate the function. g(x) = x2(1 2x)Ch. 3.1 - Differentiate the function. H(u) = (3u 1)(u + 2)

Ch. 3.1 - Differentiate the function. g(t) = 2t3/4Ch. 3.1 - Differentiate the function. B(y) = cy6Ch. 3.1 - Differentiate the function. F(r)=5r3Ch. 3.1 - Differentiate the function. y = x5/3 x2/3Ch. 3.1 - Differentiate the function. R(a) = (3a + 1)2Ch. 3.1 - Differentiate the function. h(t)=t44etCh. 3.1 - Differentiate the function. S(p)=ppCh. 3.1 - Differentiate the function. y=x3(2+x)Ch. 3.1 - Differentiate the function. y=3ex+4x3Ch. 3.1 - Differentiate the function. S(R) = 4R2Ch. 3.1 - Differentiate the function. h(u)=Au3+Bu2+CuCh. 3.1 - Differentiate the function. y=x+xx2Ch. 3.1 - Differentiate the function. y=x2+4x+3xCh. 3.1 - Differentiate the function. G(t)=5t+7tCh. 3.1 - Differentiate the function. j(x) = x2.4 + e2.4Ch. 3.1 - Differentiate the function. k(r) = er + reCh. 3.1 - Differentiate the function. G(q) = (1 + q1)2Ch. 3.1 - Differentiate the function. F(z)=A+Bz+Cz2z2Ch. 3.1 - Differentiate the function. f(v)=v32vevvCh. 3.1 - Differentiate the function. D(t)=1+16t2(4t)3Ch. 3.1 - Differentiate the function. z=Ay10+BeyCh. 3.1 - Differentiate the function. y = ex + 1 + 1Ch. 3.1 - Find an equation of the tangent line to the curve...Ch. 3.1 - Find an equation of the tangent line to the curve...Ch. 3.1 - Find an equation of the tangent line to the curve...Ch. 3.1 - Find an equation of the tangent line to the curve...Ch. 3.1 - Find equations of the tangent line and normal line...Ch. 3.1 - Find equations of the tangent line and normal line...Ch. 3.1 - Find an equation of the tangent line to the curve...Ch. 3.1 - Find an equation of the tangent line to the curve...Ch. 3.1 - Find f'(x). Compare the graphs of f and f' and use...Ch. 3.1 - Find f'(x). Compare the graphs of f and f' and use...Ch. 3.1 - (a) Graph the function f(x) = x4 3x3 6x2 + 7x +...Ch. 3.1 - (a) Graph the function g(x) = ex 3x2in the...Ch. 3.1 - Find the first and second derivatives of the...Ch. 3.1 - Find the first and second derivatives of the...Ch. 3.1 - Find the first and second derivatives of the...Ch. 3.1 - Find the first and second derivatives of the...Ch. 3.1 - The equation of motion of a particle is s = t3 ...Ch. 3.1 - The equation of motion of a particle is s = t4 ...Ch. 3.1 - Biologists have proposed a cubic polynomial to...Ch. 3.1 - The number of tree species S in a given area A in...Ch. 3.1 - Boyles Law states that when a sample of gas is...Ch. 3.1 - Find the points on the curve y = 2x3 + 3x2 12x +...Ch. 3.1 - For what value of x does the graph of f(x) = ex ...Ch. 3.1 - Show that the curve y = 2ex + 3x + 5x3 has no...Ch. 3.1 - Find an equation of the tangent line to the curve...Ch. 3.1 - Find equations of both lines that are tangent to...Ch. 3.1 - At what point on the curve y = 1 + 2ex 3x is the...Ch. 3.1 - Find an equation of the normal line to the curve...Ch. 3.1 - Where does the normal line to the parabola y = x2 ...Ch. 3.1 - Draw a diagram to show that there are two tangent...Ch. 3.1 - (a) Find equations of both lines through the point...Ch. 3.1 - Use the definition of a derivative to show that if...Ch. 3.1 - Find the nth derivative of each function by...Ch. 3.1 - Find a second-degree polynomial P such that P(2) =...Ch. 3.1 - The equation y" + y' 2y = x2 is called a...Ch. 3.1 - Find a cubic function y = ax3 + bx2 + cx + d whose...Ch. 3.1 - Find a parabola with equation y = ax2 + bx + c...Ch. 3.1 - Let {x2+1ifx1x+1ifx1 Is f differentiable at 1?...Ch. 3.1 - At what numbers is the following function g...Ch. 3.1 - (a) For what values of x is the function f(x) =...Ch. 3.1 - Where is the function h(x) = |x 1| + |x + 2|...Ch. 3.1 - Find the parabola with equation y = ax2 + bx whose...Ch. 3.1 - Suppose the curve y = x4 + ax3 + bx2 + cx + d has...Ch. 3.1 - For what values of a and b is the line 2x + y = b...Ch. 3.1 - Find the value of c such that the line y=32x+6 is...Ch. 3.1 - What is the value of c such that the line y = 2x +...Ch. 3.1 - The graph of any quadratic function f(x) = ax2 +...Ch. 3.1 - Let f(x){x2ifx2mx+bifx2 Find the values of m and b...Ch. 3.1 - A tangent line is drawn to the hyperbola xy = c at...Ch. 3.1 - Evaluate limx1x10001x1.Ch. 3.1 - Draw a diagram showing two perpendicular lines...Ch. 3.1 - If c12, how many lines through the point (0, c)...Ch. 3.1 - Sketch the parabolas y = x2 and y = x2 2x + 2. Do...Ch. 3.2 - Find the derivative of f(x) = (1 + 2x2)(x x2) in...Ch. 3.2 - Find the derivative o f the function...Ch. 3.2 - Differentiate. f(x) = (3x2 5x)exCh. 3.2 - Differentiate. g(x)=(x+22)exCh. 3.2 - Differentiate. y=xexCh. 3.2 - Differentiate. y=ex1exCh. 3.2 - Differentiate. g(x)=1+2x34xCh. 3.2 - Differentiate. G(x)=x222x+1Ch. 3.2 - Differentiate. H(u)=(uu)(u+u)Ch. 3.2 - Differentiate. J(v) = (v3 2v)(v4 + v2)Ch. 3.2 - Differentiate. F(y)=(1y23y4)(y+5y3)Ch. 3.2 - Differentiate. f(z) = (1 ez)(z + ez)Ch. 3.2 - Differentiate. y=x2+1x31Ch. 3.2 - Differentiate. y=x2+1Ch. 3.2 - Differentiate. y=t3+3tt24t+3Ch. 3.2 - Differentiate. y=1t3+2t21Ch. 3.2 - Differentiate. y=ep(p+pp)Ch. 3.2 - Differentiate. h(r)=aerb+erCh. 3.2 - Differentiate. y=sss2Ch. 3.2 - Differentiate. y=(z2+ez)zCh. 3.2 - Differentiate. f(t)=t3t3Ch. 3.2 - Differentiate. V(t)=4+ttetCh. 3.2 - Differentiate. f(x)=x2exx2+exCh. 3.2 - Differentiate. F(t)=AtBt2+Ct3Ch. 3.2 - Differentiate. f(x)=xx+cxCh. 3.2 - Differentiate. f(x)=ax+bcx+dCh. 3.2 - Find f'(x) and f"(x). f(x) = (x3 + 1)exCh. 3.2 - Find f'(x) and f"(x). f(x)=xexCh. 3.2 - Find f'(x) and f"(x). f(x)=x21+exCh. 3.2 - Find f'(x) and f"(x). f(x)=xx21Ch. 3.2 - Find an equation of the tangent line to the given...Ch. 3.2 - Find an equation of the tangent line to the given...Ch. 3.2 - Find equations of the tangent line and normal line...Ch. 3.2 - Find equations of the tangent line and normal line...Ch. 3.2 - (a) The curve y = 1/(1 + x2) is called a witch of...Ch. 3.2 - (a) The curve y = x/(1 + x2) is called a...Ch. 3.2 - (a) If f(x) = (x3 x)ex, find f'(x). (b) Check to...Ch. 3.2 - (a) If f(x) = ex/(2x2 + x + 1), find f'(x). (b)...Ch. 3.2 - (a) If f(x) = (x2 1)/(x2 + 1), find f'(x) and...Ch. 3.2 - (a) If f(x) = (x2 1)ex, find f'(x) and f"(x). (b)...Ch. 3.2 - If f(x) = x2/(l + x), find f"(1).Ch. 3.2 - If g(x) = x/ex. find g(n)(x).Ch. 3.2 - Suppose that f(5) = 1, f'(5) = 6, g(5) = 3, and...Ch. 3.2 - Suppose that f(4) = 2, g(4) = 5, f'(4) = 6. and...Ch. 3.2 - If f(x) = exg(x), where g(0) = 2 and g'(0) = 5,...Ch. 3.2 - If h(2) = 4 and h'(2) = 3, find ddx(h(x)x)|x=2Ch. 3.2 - If g(x) = xf(x), where f(3) = 4 and f'(3) = 2,...Ch. 3.2 - If f(2) = 10 and f'(x) = x2f(x) for all x, find...Ch. 3.2 - If f and g are the functions whose graphs are...Ch. 3.2 - Let P(x) = F(x)G(x) and Q(x) = F(x)/G(x), where F...Ch. 3.2 - If g is a differentiable function, find an...Ch. 3.2 - If f is a differentiable function, find an...Ch. 3.2 - How many tangent lines to the curve y = x/(x + 1)...Ch. 3.2 - Find equations of the tangent lines to the curve...Ch. 3.2 - Find R'(0), where R(x)=x3x3+5x51+3x3+6x6+9x9 Hint:...Ch. 3.2 - Use the method of Exercise 55 to compute Q'(0),...Ch. 3.2 - In this exercise we estimate the rate at which the...Ch. 3.2 - A manufacturer produces bolts of a fabric with a...Ch. 3.2 - The Michaelis-Menten equation for the enzyme...Ch. 3.2 - The biomass B(t) of a fish population is the total...Ch. 3.2 - (a) Use the Product Rule twice to prove that if f,...Ch. 3.2 - (a) If F(x) = f(x) g(x), where f and g have...Ch. 3.2 - Find expressions for the first five derivatives of...Ch. 3.2 - (a) If g is differentiable, the Reciprocal Rule...Ch. 3.3 - Differentiate. f(x) = x2 sin xCh. 3.3 - Differentiate. f(x) = x cos x + 2 tan xCh. 3.3 - Differentiate. f(x) = ex cos xCh. 3.3 - Differentiate. y = 2 sec x csc xCh. 3.3 - Differentiate. y = sec tanCh. 3.3 - Differentiate. g() = e(tan )Ch. 3.3 - Differentiate. y = c cos t + t2 sin tCh. 3.3 - Differentiate. f(t)=cottetCh. 3.3 - Differentiate. y=x2tanxCh. 3.3 - Differentiate. y = sin cosCh. 3.3 - Differentiate f()=sin1+cosCh. 3.3 - Differentiate. y=cosx1sinxCh. 3.3 - Differentiate. y=tsint1+tCh. 3.3 - Differentiate. y=sint1+tantCh. 3.3 - Differentiate. f() = cos sinCh. 3.3 - Differentiate. f(t) = tet cot tCh. 3.3 - Prove that ddx(cscx)=cscxcotx.Ch. 3.3 - Prove that ddx(secx)=secxtanxCh. 3.3 - Prove that ddx(cotx)=csc2x.Ch. 3.3 - Prove, using the definition of derivative. that if...Ch. 3.3 - Find an equation of the tangent line to the curve...Ch. 3.3 - Find an equation of the tangent line to the curve...Ch. 3.3 - Find an equation of the tangent line to the curve...Ch. 3.3 - Find an equation of the tangent line to the curve...Ch. 3.3 - (a) Find an equation of the tangent line to the...Ch. 3.3 - (a) Find an equation of the tangent line to the...Ch. 3.3 - (a) If f(x) = sec x x, find f'(x). (b) Check to...Ch. 3.3 - (a) If f(x) = ex cos x, find f'(x) and f"(x). (b)...Ch. 3.3 - If H() = sin , find H'() and H"( ).Ch. 3.3 - If f(t) = sec t, find f"(/4).Ch. 3.3 - (a) Use the Quotient Rule to differentiate the...Ch. 3.3 - Suppose f(/3) = 4 and f'(/3) = 2, and let g(x) =...Ch. 3.3 - For what values of x does the graph of f have a...Ch. 3.3 - For what values of x does the graph of f have a...Ch. 3.3 - A mass on a spring vibrates horizontally on a...Ch. 3.3 - An elastic band is hung on a hook and a mass is...Ch. 3.3 - A ladder 10 ft long rests against a vertical wall....Ch. 3.3 - An object with weight W is dragged along a...Ch. 3.3 - Find the limit. limx0sin5x3xCh. 3.3 - Find the limit. limx0sinxsinxCh. 3.3 - Find the limit. limt0tan6tsin2tCh. 3.3 - Find the limit. lim0cos1sinCh. 3.3 - Find the limit. limx0sin3x5x34xCh. 3.3 - Find the limit. limx0sin3xsin5xx2Ch. 3.3 - Find the limit. lim0sin+tanCh. 3.3 - Find the limit. limx0cscxsin(sinx)Ch. 3.3 - Find the limit. lim0cos122Ch. 3.3 - Find the limit. limx0sin(x2)xCh. 3.3 - Find the limit. limx/41tanxsinxcosxCh. 3.3 - Find the limit. limx1sin(x1)x2+x2Ch. 3.3 - Find the given derivative by finding the first few...Ch. 3.3 - Find the given derivative by finding the first few...Ch. 3.3 - Find constants A and B such that the function y =...Ch. 3.3 - (a) Evaluate limxxsin1x. (b) Evaluate limx0xsin1x....Ch. 3.3 - Differentiate each trigonometric identity to...Ch. 3.3 - A semicircle with diameter PQ sits on an isosceles...Ch. 3.3 - The figure shows a circular arc of length s and a...Ch. 3.3 - Let f(x)=x1cos2x. (a) Graph f. What type of...Ch. 3.4 - Write the composite function in the form f(g(x))....Ch. 3.4 - Write the composite function in the form f(g(x))....Ch. 3.4 - Write the composite function in the form f(g(x))....Ch. 3.4 - Write the composite function in the form f(g(x))....Ch. 3.4 - Write the composite function in the form f(g(x))....Ch. 3.4 - Write the composite function in the form f(g(x))....Ch. 3.4 - Find the derivative of the function. F(x) = (5x6 +...Ch. 3.4 - Find the derivative of the function. F (x) = (1 +...Ch. 3.4 - Find the derivative of the function. f(x)=5x+1Ch. 3.4 - Find the derivative of the function. f(x)=1x213Ch. 3.4 - Find the derivative of the function. f() = cos(2)Ch. 3.4 - Find the derivative of the function. g() = cos2Ch. 3.4 - Find the derivative of the function. y = x2e3xCh. 3.4 - Find the derivative of the function. f(t) = t sin ...Ch. 3.4 - Find the derivative of the function. f(t) = eat...Ch. 3.4 - Find the derivative of the function. g(x)=ex2xCh. 3.4 - Find the derivative of the function. f(x) = (2x ...Ch. 3.4 - Find the derivative of the function. g(x) = (x2 +...Ch. 3.4 - Find the derivative of the function. h(t) = (t +...Ch. 3.4 - Find the derivative of the function. F(t) = (3t ...Ch. 3.4 - Find the derivative of the function. y=xx+1Ch. 3.4 - Find the derivative of the function. y=(x+1x)5Ch. 3.4 - Find the derivative of the function. y = e tanCh. 3.4 - Find the derivative of the function. f(t)2t3Ch. 3.4 - Find the derivative of the function....Ch. 3.4 - Find the derivative of the function....Ch. 3.4 - Find the derivative of the function. r(t)=10t2Ch. 3.4 - Find the derivative of the function. f(z) =...Ch. 3.4 - Find the derivative of the function....Ch. 3.4 - Find the derivative of the function. J() = tan2(n)Ch. 3.4 - Find the derivative of the function. F(t) = et sin...Ch. 3.4 - Find the derivative of the function. F(t)=t2t3+1Ch. 3.4 - Find the derivative of the function. G(x) = 4C/xCh. 3.4 - Find the derivative of the function....Ch. 3.4 - Find the derivative of the function....Ch. 3.4 - Find the derivative of the function. y = x2 e1/xCh. 3.4 - Find the derivative of the function. y = cot2(sin...Ch. 3.4 - Find the derivative of the function. y=1+xe2xCh. 3.4 - Find the derivative of the function. f(t) =...Ch. 3.4 - Find the derivative of the function. y = esin 2x +...Ch. 3.4 - Find the derivative of the function....Ch. 3.4 - Find the derivative of the function. y=x+x+xCh. 3.4 - Find the derivative of the function. g(x) = (2...Ch. 3.4 - Find the derivative of the function. y=234xCh. 3.4 - Find the derivative of the function....Ch. 3.4 - Find the derivative of the function. y = [x + (x +...Ch. 3.4 - Find y and y. y = cos(sin 3)Ch. 3.4 - Find y and y. y=1(1+tanx)2Ch. 3.4 - Find y and y. y=1sectCh. 3.4 - Find y and y. y=eexCh. 3.4 - Find an equation of the tangent line to the curve...Ch. 3.4 - Find an equation of the tangent line to the curve...Ch. 3.4 - Find an equation of the tangent line to the curve...Ch. 3.4 - Find an equation of the tangent line to the curve...Ch. 3.4 - (a) Find an equation of the tangent line to the...Ch. 3.4 - (a) The curve y=|x|/2x2 is called a bullet-nose...Ch. 3.4 - (a) If f(x)=2x2x, find f(x). (b) Check to see that...Ch. 3.4 - The function f(x) = sin(x + sin 2x), 0 x ,...Ch. 3.4 - Find all points on the graph of the function f(x)...Ch. 3.4 - At what point on the curve y=1+2x is the tangent...Ch. 3.4 - If F(x) = f(g(x)), where f(2) = 8, f(2) = 4, f(5)...Ch. 3.4 - If h(x)=4+3f(x), where f(1) = 7andf(1) = 4, find...Ch. 3.4 - A table of values for f, g, f, and g is given. (a)...Ch. 3.4 - Let f and g be the functions in Exercise 63. (a)...Ch. 3.4 - If f and g are the functions whose graphs are...Ch. 3.4 - If f is the function whose graph is shown, let...Ch. 3.4 - If g(x)=f(x), where the graph off is shown,...Ch. 3.4 - Suppose f is differentiable on and is a real...Ch. 3.4 - Suppose f is differentiable on . Let F(x) = f(ex)...Ch. 3.4 - Let g(x) = ecx + f(x) and h(x) = ekxf(x), where...Ch. 3.4 - Let r(x) = f(g(h(x))), where h(1) = 2, g(2) = 3,...Ch. 3.4 - If g is a twice differentiable function and f(x) =...Ch. 3.4 - If F(x) = f(3f(4f(x))), where f(0) = 0 and f(0) =...Ch. 3.4 - If F(x) = f(x f (xf(x))), where f(1) = 2, f(2) =...Ch. 3.4 - Show that the function y = e2x (A cos 3x + B sin...Ch. 3.4 - For what values of r does the function y = erx...Ch. 3.4 - Find the 50th derivative of y = cos 2x.Ch. 3.4 - Find the 1000th derivative of f(x) = xex.Ch. 3.4 - The displacement of a particle on a vibrating...Ch. 3.4 - If the equation of motion of a particle is given...Ch. 3.4 - A Cepheid variable star is a star whose brightness...Ch. 3.4 - In Example 1.3.4 we arrived at a model for the...Ch. 3.4 - The motion of a spring that is subject to a...Ch. 3.4 - Under certain circumstance a rumor spreads...Ch. 3.4 - The average blood alcohol concentration (BAC) of...Ch. 3.4 - In Section 1.4 we modeled the world population...Ch. 3.4 - A particle moves along a straight line with...Ch. 3.4 - Air is being pumped into a spherical weather...Ch. 3.4 - The flash unit on a camera operates by storing...Ch. 3.4 - The table gives the US population from 1790 to...Ch. 3.4 - Use the Chain Rule to prove the following. (a) The...Ch. 3.4 - Use the Chain Rule and the Product Rule to give an...Ch. 3.4 - (a) If n is a positive integer, prove that...Ch. 3.4 - Suppose y = f(x) is a curve that always lies above...Ch. 3.4 - Use the Chain Rule to show that if is measured in...Ch. 3.4 - (a) Write |x|=x2 and use the Chain Rule to show...Ch. 3.4 - lf y = f(u) and u = g(x), where f and g are twice...Ch. 3.4 - If y = f(u) and u = g(x), where f and g possess...Ch. 3.5 - (a) Find y by implicit differentiation. (b) Solve...Ch. 3.5 - (a) Find y by implicit differentiation. (b) Solve...Ch. 3.5 - (a) Find y by implicit differentiation. (b) Solve...Ch. 3.5 - (a) Find y by implicit differentiation. (b) Solve...Ch. 3.5 - Find dy/dx by implicit differentiation. 5. x2 4xy...Ch. 3.5 - Find dy/dx by implicit differentiation. 6. 2x2 +...Ch. 3.5 - Find dy/dx by implicit differentiation. 7. x4 +...Ch. 3.5 - Find dy/dx by implicit differentiation. 8. x3 xy2...Ch. 3.5 - Find dy/dx by implicit differentiation. 9....Ch. 3.5 - Find dy/dx by implicit differentiation. 10. xey =...Ch. 3.5 - Find dy/dx by implicit differentiation. 11. y cos...Ch. 3.5 - Find dy/dx by implicit differentiation. 12....Ch. 3.5 - Find dy/dx by implicit differentiation. 13....Ch. 3.5 - Find dy/dx by implicit differentiation. 14. ey sin...Ch. 3.5 - Find dy/dx by implicit differentiation. 15. ex/y...Ch. 3.5 - Find dy/dx by implicit differentiation. 16....Ch. 3.5 - Find dy/dx by implicit differentiation. 17....Ch. 3.5 - Find dy/dx by implicit differentiation. 18. x sin...Ch. 3.5 - Find dy/dx by implicit differentiation. 19....Ch. 3.5 - Find dy/dx by implicit differentiation. 20....Ch. 3.5 - If f(x) + x2 [f(x)]3 = 10 and f(1) = 2, find f(1).Ch. 3.5 - If g(x) + x sin g(x) = x2, find g(0).Ch. 3.5 - Regard y as the independent variable and x as the...Ch. 3.5 - Regard y as the independent variable and x as the...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - Use implicit differentiation to find an equation...Ch. 3.5 - (a) The curve with equation y2 = 5x4 x2 is called...Ch. 3.5 - (a) The curve with equation y2 = x3 + 3x2 is...Ch. 3.5 - Find y by implicit differentiation. 35. x2 + 4y2 =...Ch. 3.5 - Find y by implicit differentiation. 36. x2 + xy +...Ch. 3.5 - Find y by implicit differentiation. 37. sin y +...Ch. 3.5 - Find y by implicit differentiation. 38. x3 y3 = 7Ch. 3.5 - If xy + ey = e, find the value of y at the point...Ch. 3.5 - If x2 + xy + y3 = 1, find the value of y at the...Ch. 3.5 - Find the points on the lemniscate in Exercise 31...Ch. 3.5 - Show by implicit differentiation that the tangent...Ch. 3.5 - Find an equation of the tangent line to the...Ch. 3.5 - Show that the sum of the x-and y-intercepts of any...Ch. 3.5 - Show, using implicit differentiation, that any...Ch. 3.5 - The Power Rule can be proved using implicit...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find the derivative of the function. Simplify...Ch. 3.5 - Find f(x). Check that your answer is reasonable by...Ch. 3.5 - Find f(x). Check that your answer is reasonable by...Ch. 3.5 - Prove the formula for (d/dx)(cos1x) by the same...Ch. 3.5 - (a) One way of defining sec1x is to say that...Ch. 3.5 - Two curves are orthogonal if their tangent lines...Ch. 3.5 - Two curves are orthogonal if their tangent lines...Ch. 3.5 - Two curves are orthogonal if their tangent lines...Ch. 3.5 - Two curves are orthogonal if their tangent lines...Ch. 3.5 - Show that the ellipse x2/a2 + y2/b2 = 1 and the...Ch. 3.5 - Find the value of the number a such that the...Ch. 3.5 - (a) The van der Waals equation for n moles of a...Ch. 3.5 - The equation x2 xy + y2 = 3 re presents a...Ch. 3.5 - (a) Where does the normal line to the ellipse x2 ...Ch. 3.5 - Find all points on the curve x2y2 + xy = 2 where...Ch. 3.5 - Find equations of both the tangent lines to the...Ch. 3.5 - (a) Suppose f is a one-to-one differentiable...Ch. 3.5 - (a) Show that f(x) = x + ex is one-to-one. (b)...Ch. 3.5 - The Bessel function of order 0, y = J(x),...Ch. 3.5 - The figure shows a lamp located three units to the...Ch. 3.6 - Explain why the natural logarithmic function y =...Ch. 3.6 - Differentiate the function. f(x) = x ln x xCh. 3.6 - Differentiate the function. f(x ) = sin(ln x)Ch. 3.6 - Differentiate the function. f(x) = ln(sin2x)Ch. 3.6 - Differentiate the function. f(x)=ln1xCh. 3.6 - Differentiate the function. y=1lnxCh. 3.6 - Differentiate the function. f(x) = log10(1 + cos...Ch. 3.6 - Differentiate the function. f(x)log10xCh. 3.6 - Differentiate the function. g(x) = ln(xe2x)Ch. 3.6 - Differentiate the function. g(t)=1+lntCh. 3.6 - Differentiate the function. F(t) =(ln t)2 sin tCh. 3.6 - Differentiate the function. h(x)=ln(x+x21)Ch. 3.6 - Differentiate the function. G(y)=ln(2y+1)5y2+1Ch. 3.6 - Differentiate the function. p(v)=lnv1vCh. 3.6 - Differentiate the function. F(s) = ln ln sCh. 3.6 - Differentiate the function. y = ln |1 + t t3|Ch. 3.6 - Differentiate the function. T(z) = 2z log2zCh. 3.6 - Differentiate the function. y = ln(csc x cot x)Ch. 3.6 - Differentiate the function. y = ln(ex + xex)Ch. 3.6 - Differentiate the function. H(z)=a2z2a2+z2Ch. 3.6 - Differentiate the function. y = tan[ln(ax + b)]Ch. 3.6 - Differentiate the function. y = log2 (x log5 x)Ch. 3.6 - Find y and y. y=xlnxCh. 3.6 - Find y and y. y=lnx1+lnxCh. 3.6 - Find y and y. y = ln |sec x|Ch. 3.6 - Find y and y. y = ln(l + ln x)Ch. 3.6 - Differentiate f and find the domain of f....Ch. 3.6 - Differentiate f and find the domain of f....Ch. 3.6 - Differentiate f and find the domain of f. f(x) =...Ch. 3.6 - Differentiate f and find the domain of f. f(x) ln...Ch. 3.6 - If f(x) = ln(x + ln x), find f(1).Ch. 3.6 - If f(x) = cos(ln x2), find f(1).Ch. 3.6 - Find an equation of the tangent line to the curve...Ch. 3.6 - Find an equation of the tangent line to the curve...Ch. 3.6 - If f(x) = sin x + ln x, find f(x). Check that your...Ch. 3.6 - Find equations of the tangent lines to the curve y...Ch. 3.6 - Let f(x) = cx + ln(cos x). For what value of c is...Ch. 3.6 - Let f(x) = logb (3x2 2). For what value of b is...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Use logarithmic differentiation to find the...Ch. 3.6 - Find y if y = ln(x2 + y2).Ch. 3.6 - Find y if xy = yx.Ch. 3.6 - Find a formula for f(n)(x) if f(x) = ln(x 1).Ch. 3.6 - Find d9dx9(x8lnx).Ch. 3.6 - Use the definition of derivative to prove that...Ch. 3.6 - Show that limn(1+xn)n=exfor any x 0.Ch. 3.7 - A particle moves according to a law of motion s =...Ch. 3.7 - A particle moves according to a law of motion s =...Ch. 3.7 - A particle moves according to a law of motion s =...Ch. 3.7 - A particle moves according to a law of motion s =...Ch. 3.7 - Graphs of the velocity functions of two particles...Ch. 3.7 - Graphs of the position functions of two particles...Ch. 3.7 - The height (in meters) of a projectile shot...Ch. 3.7 - If a ball is thrown vertically upward with a...Ch. 3.7 - If a rock is thrown vertically upward from the...Ch. 3.7 - A particle moves with position function s = t4 ...Ch. 3.7 - (a) A company makes computer chips from square...Ch. 3.7 - (a) Sodium chlorate crystals are easy to grow in...Ch. 3.7 - (a) Find the average rate of change of the area of...Ch. 3.7 - A stone is dropped into a lake, creating a...Ch. 3.7 - A spherical balloon is being inflated. Find the...Ch. 3.7 - (a) The volume of a growing spherical cell is...Ch. 3.7 - The mass of the part of a metal rod that lies...Ch. 3.7 - If a tank holds 5000 gallons of water, which...Ch. 3.7 - The quantity of charge Q in coulombs (C) that has...Ch. 3.7 - Newtons Law of Gravitation says that the magnitude...Ch. 3.7 - The force F acting on a body with mass m and...Ch. 3.7 - Some of the highest tides in the world occur in...Ch. 3.7 - Boyles Law states that when a sample of gas is...Ch. 3.7 - If, in Example 4, one molecule of the product C is...Ch. 3.7 - In Example 6 we considered a bacteria population...Ch. 3.7 - The number of yeast cells in a laboratory culture...Ch. 3.7 - The table shows how the average age of first...Ch. 3.7 - Refer to the law of laminar flow given in Example...Ch. 3.7 - The frequency of vibrations of a vibrating violin...Ch. 3.7 - Suppose that the cost (in dollars) for a company...Ch. 3.7 - The cost function for a certain commodity is C(q)...Ch. 3.7 - If p(x) is the total value of the production when...Ch. 3.7 - If R denotes the reaction of the body to some...Ch. 3.7 - Patients undergo dialysis treatment to remove urea...Ch. 3.7 - Invasive species often display a wave of advance...Ch. 3.7 - The gas law for an ideal gas at absolute...Ch. 3.7 - In a fish farm, a population of fish is introduced...Ch. 3.7 - In the study of ecosystems, predator-prey models...Ch. 3.8 - A population of protozoa develops with a constant...Ch. 3.8 - A common inhabitant of human intestines is the...Ch. 3.8 - A bacteria culture initially contains 100 cells...Ch. 3.8 - A bacteria culture grows with constant relative...Ch. 3.8 - The table gives estimates of the world population,...Ch. 3.8 - The table gives the population of Indonesia, in...Ch. 3.8 - Experiments show that if the chemical reaction...Ch. 3.8 - Strontium-90 has a half-life of 28 days. (a) A...Ch. 3.8 - The half-life of cesium-137 is 30 years. Suppose...Ch. 3.8 - A sample oflritium-3 decayed to 94.5% of its...Ch. 3.8 - Scientists can determine the age of ancient...Ch. 3.8 - Dinosaur fossils are too old to be reliably dated...Ch. 3.8 - Dinosaur fossils are often dated by using an...Ch. 3.8 - A curve passes through the point (0, 5) and has...Ch. 3.8 - A roast turkey is taken from an oven when its...Ch. 3.8 - In a murder investigation, the temperature of the...Ch. 3.8 - When a cold drink is taken from a refrigerator,...Ch. 3.8 - A freshly brewed cup of coffee has temperature 95C...Ch. 3.8 - The rate of change of atmospheric pressure P with...Ch. 3.8 - (a) If 1000 is borrowed at 8% interest, find the...Ch. 3.8 - (a) If 3000 is invested at 5% interest, find the...Ch. 3.8 - (a) How long will it take an investment to double...Ch. 3.9 - If V is the volume of a cube with edge length x...Ch. 3.9 - (a) If A is the area of a circle with radius r and...Ch. 3.9 - Each side of a square is increasing at a rate of 6...Ch. 3.9 - The length of a rectangle is increasing at a rate...Ch. 3.9 - A cylindrical tank with radius 5 m is being filled...Ch. 3.9 - The radius of a sphere is increasing at a rate of...Ch. 3.9 - The radius of a spherical ball is increasing at a...Ch. 3.9 - The area of a triangle with sides of lengths a and...Ch. 3.9 - Suppose y=2x+1, where x and y are functions of t....Ch. 3.9 - Suppose 4x2 + 9y2 = 36, where x and y are...Ch. 3.9 - If x2 + y2 + z2 = 9, dx/dt = 5, and dy/dt = 4,...Ch. 3.9 - A particle is moving along a hyperbola xy = 8. As...Ch. 3.9 - (a) What quantities are given in the problem? (b)...Ch. 3.9 - (a) What quantities are given in the problem? (b)...Ch. 3.9 - (a) What quantities are given in the problem? (b)...Ch. 3.9 - (a) What quantities are given in the problem? (b)...Ch. 3.9 - Two cars start moving from the same point. One...Ch. 3.9 - A spotlight on the ground shines on a wall 12m...Ch. 3.9 - A man starts walking north at 4 ft/s from a point...Ch. 3.9 - A baseball diamond is a square with side 90 ft. A...Ch. 3.9 - The altitude of a triangle is increasing at a rate...Ch. 3.9 - A boat is pulled into a dock by a rope attached to...Ch. 3.9 - At noon, ship A is 100 km west of ship B. Ship A...Ch. 3.9 - A particle moves along the curve y = 2 sin(x/2)....Ch. 3.9 - Water is leaking out of an inverted conical tank...Ch. 3.9 - A trough is 10 ft long and its ends have the shape...Ch. 3.9 - A water trough is 10m long and a cross-section has...Ch. 3.9 - A swimming pool is 20 ft wide, 40 ft long, 3 ft...Ch. 3.9 - Gravel is being dumped from a conveyor belt at a...Ch. 3.9 - A kite 100ft above the ground moves horizontally...Ch. 3.9 - The sides of an equilateral triangle are...Ch. 3.9 - How fast is the angle between the ladder and the...Ch. 3.9 - The top of a ladder slides down a vertical wall at...Ch. 3.9 - According to the model we used to solve Example 2,...Ch. 3.9 - If the minute hand of a clock has length r (in...Ch. 3.9 - A faucet is filling a hemispherical basin of...Ch. 3.9 - Boyles Law states that when a sample of gas is...Ch. 3.9 - When air expands adiabatically (without gaining or...Ch. 3.9 - If two resistors with resistances R1 and R2 are...Ch. 3.9 - Brain weight B as a function of body weight Win...Ch. 3.9 - Two sides of a triangle have lengths 12 m and 15...Ch. 3.9 - Two carts, A and B, are connected by a rope 39 ft...Ch. 3.9 - A television camera is positioned 4000 ft from the...Ch. 3.9 - A lighthouse is located on a small island 3 km...Ch. 3.9 - A plane flies horizontally at an altitude of 5 km...Ch. 3.9 - A Ferris wheel with a radius of 10m is rotating at...Ch. 3.9 - A plane flying with a constant speed of 300 km/h...Ch. 3.9 - Two people start from the same point. One walks...Ch. 3.9 - A runner sprints around a circular track of radius...Ch. 3.9 - The minute hand on a watch is 8 mm long and the...Ch. 3.10 - Find the linearization L(x) of the function at n....Ch. 3.10 - Find the linearization L(x) of the function at n....Ch. 3.10 - Find the linearization L(x) of the function at n....Ch. 3.10 - Find the linearization L(x) of the function at n....Ch. 3.10 - Find the linear approximation of the function...Ch. 3.10 - Find the linear approximation of the function...Ch. 3.10 - Verify the given linear approximation at a = 0....Ch. 3.10 - Verify the given linear approximation at a = 0....Ch. 3.10 - Verify the given linear approximation at a = 0....Ch. 3.10 - Verify the given linear approximation at a = 0....Ch. 3.10 - Find the differential of each function. 11. (a) y...Ch. 3.10 - Find the differential of each function. 12. (a)...Ch. 3.10 - Find the differential of each function. 13. (a)...Ch. 3.10 - Find the differential of each function. 14. (a) y...Ch. 3.10 - (a) Find the differential dy and (b) evaluate dy...Ch. 3.10 - (a) Find the differential dy and (b) evaluate dy...Ch. 3.10 - (a) Find the differential dy and (b) evaluate dy...Ch. 3.10 - (a) Find the differential dy and (b) evaluate dy...Ch. 3.10 - Compute y and dy for the given values of x and dx...Ch. 3.10 - Compute y and dy for the given values of x and dx...Ch. 3.10 - Compute y and dy for the given values of x and dx...Ch. 3.10 - Compute y and dy for the given values of x and dx...Ch. 3.10 - Use a linear approximation (or differentials) to...Ch. 3.10 - Use a linear approximation (or differentials) to...Ch. 3.10 - Use a linear approximation (or differentials) to...Ch. 3.10 - Use a linear approximation (or differentials) to...Ch. 3.10 - Use a linear approximation (or differentials) to...Ch. 3.10 - Use a linear approximation (or differentials) to...Ch. 3.10 - Explain, in terms of linear approximations or...Ch. 3.10 - Explain, in terms of linear approximations or...Ch. 3.10 - Explain, in terms of linear approximations or...Ch. 3.10 - Let f(x) = (x 1)2 g(x) = e2x and h(x) = 1 + ln(1 ...Ch. 3.10 - The edge of a cube was found to be 30 cm with a...Ch. 3.10 - The radius of a circular disk is given as 24 cm...Ch. 3.10 - The circumference of a sphere was measured to be...Ch. 3.10 - Use differentials to estimate the amount of paint...Ch. 3.10 - (a) Use differentials to find a formula for the...Ch. 3.10 - One side of a right triangle is known to be 20 cm...Ch. 3.10 - If a current I passes through a resistor with...Ch. 3.10 - When blood flows along a blood vessel, the flux F...Ch. 3.10 - Establish the following rules for working with...Ch. 3.10 - On page 431 of Physics: Calculus, 2d ed., by...Ch. 3.10 - Suppose that the only information we have about a...Ch. 3.10 - Suppose that we dont have a formula for g(x) but...Ch. 3.11 - Find the numerical value of each expression. 1....Ch. 3.11 - Find the numerical value of each expression. 2....Ch. 3.11 - Find the numerical value of each expression. 3....Ch. 3.11 - Find the numerical value of each expression. 4....Ch. 3.11 - Find the numerical value of each expression. 5....Ch. 3.11 - Find the numerical value of each expression. 6....Ch. 3.11 - Prove the identity. 7. sinh(x) = sinh x (This...Ch. 3.11 - Prove the identity. 8. cosh(x) = cosh x (This...Ch. 3.11 - Prove the identity. 9. cosh x + sinh x = exCh. 3.11 - Prove the identity. 10. cosh x sinh r = exCh. 3.11 - Prove the identity. 11. sinh(x + y) = sinh x cosh...Ch. 3.11 - Prove the identity. 12. cosh(x + y) = cosh x cosh...Ch. 3.11 - Prove the identity. 13. coth2x 1 = csch2xCh. 3.11 - Prove the identity. 14....Ch. 3.11 - Prove the identity. 15. sinh 2x = 2 sinh x cosh xCh. 3.11 - Prove the identity. 16. cosh 2x = cosh2x + sinh2xCh. 3.11 - Prove the identity. 17. tanh(lnx)=x21x2+1Ch. 3.11 - Prove the identity. 18. 1+tanhx1tanhx=e2xCh. 3.11 - Prove the identity. 19. (cosh x + sinh x)n = cosh...Ch. 3.11 - If x=1213 find the values of the other hyperbolic...Ch. 3.11 - If cosh=53 and x 0. find the values of the other...Ch. 3.11 - (a) Use the graphs of sinh, cosh, and tanh in...Ch. 3.11 - Use the definitions of the hyperbolic functions to...Ch. 3.11 - Prove the formulas given in Table 1 for the...Ch. 3.11 - Give an alternative solution 10 Example 3 by...Ch. 3.11 - Prove Equation 4.Ch. 3.11 - Prove Equation 5 using (a) the method of Example 3...Ch. 3.11 - For each of I he following functions (i) give a...Ch. 3.11 - Prove the formulas given in Table 6 for the...Ch. 3.11 - Find the derivative. Simplify where possible. 30....Ch. 3.11 - Find the derivative. Simplify where possible. 31....Ch. 3.11 - Find the derivative. Simplify where possible. 32....Ch. 3.11 - Find the derivative. Simplify where possible. 33....Ch. 3.11 - Find the derivative. Simplify where possible. 34....Ch. 3.11 - Find the derivative. Simplify where possible. 35....Ch. 3.11 - Find the derivative. Simplify where possible. 36....Ch. 3.11 - Find the derivative. Simplify where possible. 37....Ch. 3.11 - Find the derivative. Simplify where possible. 38....Ch. 3.11 - Find the derivative. Simplify where possible. 39....Ch. 3.11 - Find the derivative. Simplify where possible. 40....Ch. 3.11 - Find the derivative. Simplify where possible. 41....Ch. 3.11 - Find the derivative. Simplify where possible. 42....Ch. 3.11 - Find the derivative. Simplify where possible. 43....Ch. 3.11 - Find the derivative. Simplify where possible. 44....Ch. 3.11 - Find the derivative. Simplify where possible. 45....Ch. 3.11 - Show that ddx1+tanhx1tanhx4=12ex/2.Ch. 3.11 - Show that ddx arctan(tanh x) = sech 2x.Ch. 3.11 - The Gateway Arch in St. Louis was designed by Eero...Ch. 3.11 - If a water wave with length L. moves with velocity...Ch. 3.11 - A flexible cable always hangs in the shape of a...Ch. 3.11 - A telephone line hangs between two poles 14 m...Ch. 3.11 - Using principles from physics it can be shown that...Ch. 3.11 - A cable with linear density = 2 kg/m is strung...Ch. 3.11 - A model for the velocity of a falling object after...Ch. 3.11 - (a) Show that any function of the form y = A sinh...Ch. 3.11 - If x = ln( sec + tan ), show that sec = cosh x.Ch. 3.11 - At what point of the curve y = cosh x does the...Ch. 3.11 - Investigate the family of functions fn(x) = tanh...Ch. 3 - State each differentiation rule both in symbols...Ch. 3 - State the derivative of each function. (a) y = xn...Ch. 3 - (a) How is the number e defined? (b) Express e as...Ch. 3 - (a) Explain how implicit differentiation works....Ch. 3 - Give several examples of how the derivative can be...Ch. 3 - (a) Write a differential equation that expresses...Ch. 3 - (a) Write an expression for the linearization of f...Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Determine whether the statement is true or false....Ch. 3 - Calculate y'. 1. y = (x2 + x3)4Ch. 3 - Calculate y'. 2. y=1x1x35Ch. 3 - Calculate y'. 3. y=x2x+2xCh. 3 - Calculate y'. 4. y=tanx1+cosxCh. 3 - Calculate y'. 5. y = x2 sin xCh. 3 - Calculate y'. 6. y = x cos1xCh. 3 - Calculate y'. 7. y=t41t4+1Ch. 3 - Calculate y'. 8. xey = y sin xCh. 3 - Calculate y'. 9. y = ln(x ln x)Ch. 3 - Calculate y'. 10. y = emx' cos nxCh. 3 - Calculate y'. 11. y=xcosxCh. 3 - Calculate y'. 12. y = (arcsin 2x)2Ch. 3 - Calculate y'. 13. y=e1/xx2Ch. 3 - Calculate y'. 14. y = ln sec xCh. 3 - Calculate y'. 15. y + x cos y = x2yCh. 3 - Calculate y'. 16. y=(u1u2+u+1)4Ch. 3 - Calculate y'. 17. y=arctanCh. 3 - Calculate y'. 18. y = cot(csc x)Ch. 3 - Calculate y'. 19. y=tan(t1+t2)Ch. 3 - Calculate y'. 20. y = exsec xCh. 3 - Calculate y'. 21. y = 3x ln xCh. 3 - Calculate y'. 22. y = sec(1 + x2)Ch. 3 - Calculate y'. 23. y = (1 x1)1Ch. 3 - Calculate y'. 24. y=1/x+x3Ch. 3 - Calculate y'. 25. sin(xy) = x2 yCh. 3 - Calculate y'. 26. y=sinxCh. 3 - Calculate y'. 27. y = log5(1 + 2x)Ch. 3 - Calculate y'. 28. y = (cos x)xCh. 3 - Calculate y'. 29. y=lnsinx12sin2xCh. 3 - Calculate y'. 30. y=(x2+1)4(2x+1)3(3x1)5Ch. 3 - Calculate y'. 31. y = x tan1(4x)Ch. 3 - Calculate y'. 32. y = ecos x + cos(ex)Ch. 3 - Calculate y'. 33. y = ln | sec 5x + tan 5x |Ch. 3 - Calculate y'. 34. y = 10tanCh. 3 - Calculate y'. 35. y = cot(3x2 + 5)Ch. 3 - Calculate y'. 36. y=tln(t4)Ch. 3 - Calculate y'. 37. y=sin(tan1+x3)Ch. 3 - Calculate y'. 38. y=arctan(arcsinx)Ch. 3 - Calculate y'. 39. y = tan2(sin )Ch. 3 - Calculate y'. 40. xey = y 1Ch. 3 - Calculate y'. 41. y=x+1(2x)5(x+3)7Ch. 3 - Calculate y'. 42. y=(x+)4x4+4Ch. 3 - Calculate y'. 43. y = x sinh(x2)Ch. 3 - Calculate y'. 44. y=sinmxxCh. 3 - Calculate y'. 45. y = ln( cosh 3x)Ch. 3 - Calculate y'. 46. y=ln|x242x+5|Ch. 3 - Calculate y'. 47. y = cosh1(sinh x)Ch. 3 - Calculate y'. 48. y=xtanh1xCh. 3 - Calculate y'. 49. y=cos(etan3x)Ch. 3 - Calculate y'. 50. y=sin2(cossinx)Ch. 3 - If f(t)=4t+1 find f(2).Ch. 3 - If g() = sin , find g(/6).Ch. 3 - Find y if x6 + y6 = 1.Ch. 3 - Find f(n)(x) if f(x) = 1/(2 x).Ch. 3 - Use mathematical induction (page 72) to show that...Ch. 3 - Evaluate limt0t3tan3(2t)Ch. 3 - Find an equation of the tangent to the curve at...Ch. 3 - Find an equation of the tangent to the curve at...Ch. 3 - Find an equation of the tangent to the curve at...Ch. 3 - Find equations of the tangent line and normal line...Ch. 3 - Find equations of the tangent line and normal line...Ch. 3 - If f(x) = xesin x find f(x). Graph f and f on the...Ch. 3 - (a) If f(x)=5xx. (b) Find equations of the tangent...Ch. 3 - (a) If f(x) = 4x tan x, /2 x /2, find f and f....Ch. 3 - At what points on the curve y = sin x + cos x, 0 ...Ch. 3 - Find the points on the ellipse x2 + 2y2 = 1 where...Ch. 3 - If f(x) = (x a)(x b)(x c), show that...Ch. 3 - (a) By differentiating the double-angle formula...Ch. 3 - Suppose that f(1) = 2 f(1) = 3 f(2) = 1 f'(2) = 2...Ch. 3 - If f and g are the functions whose graphs are...Ch. 3 - Find f in terms of g. f(x) = x2g(x)Ch. 3 - Find f in terms of g. f(x) = g(x2)Ch. 3 - Find f in terms of g. f(x) = [g(x)]2Ch. 3 - Find f in terms of g. f(x) = g(g(x))Ch. 3 - Find f in terms of g. f(x) = g(ex)Ch. 3 - Find f in terms of g. f(x) = eg(x)Ch. 3 - Find f in terms of g. f(x) = ln |g(x)|Ch. 3 - Find f in terms of g. f(x) = g(ln x)Ch. 3 - Find f in terms of f and g. h(x)=f(x)g(x)f(x)+g(x)Ch. 3 - Find f in terms of f and g. h(x)=f(x)g(x)Ch. 3 - Find f in terms of f and g. h(x) = f(g(sin 4x))Ch. 3 - (a) Graph the function f(x) = x 2 sin x in the...Ch. 3 - At what point on the curve y = [ln(x + 4)]2 is the...Ch. 3 - (a) Find an equation of the tangent to the curve y...Ch. 3 - Find a parabola y = ax2 + bx + c that passes...Ch. 3 - The function C(t) = K(eat ebt), where a, b, and K...Ch. 3 - An equation of motion of the form s=Aectcos(t+)...Ch. 3 - A particle moves along a horizontal line so that...Ch. 3 - A particle moves on a vertical line so that its...Ch. 3 - The volume of a right circular cone is V=13r2h,...Ch. 3 - The mass of part of a wire is x(1+x) kilograms,...Ch. 3 - The cost, in dollars, of producing x units of a...Ch. 3 - A bacteria culture contains 200 cells initially...Ch. 3 - Cobalt-60 has a half-life of 5.24 years. (a) Find...Ch. 3 - Let C(t) be the concentration of a drug in the...Ch. 3 - A cup of hot chocolate has temperature 80C in a...Ch. 3 - The volume of a cube is increasing at a rate of...Ch. 3 - A paper cup has the shape of a cone with height 10...Ch. 3 - A balloon is rising at a constant speed of 5 ft/s....Ch. 3 - A waterskier skis over the ramp shown in the...Ch. 3 - The angle of elevation of the sun is decreasing at...Ch. 3 - (a) Find the linear approximation to f(x)=25x2...Ch. 3 - (a) Find the linearization of f(x)1+3x3 at a = 0....Ch. 3 - Evaluate dy if y = x3 2x2 + 1, x = 2, and dx =...Ch. 3 - A window has the shape of a square surmounted by a...Ch. 3 - Express the limit as a derivative and evaluate....Ch. 3 - Express the limit as a derivative and evaluate....Ch. 3 - Express the limit as a derivative and evaluate....Ch. 3 - Evaluate limx01+tanx1+sinxx3.Ch. 3 - Suppose f is a differentiable function such that...Ch. 3 - Find f(x) if it is known that ddx[f(2x)]=x2Ch. 3 - Show that the length of the portion of any tangent...Ch. 3 - Find points P and Q on the parabola y = 1 x2 so...Ch. 3 - Find the point where the curves y = x3 3x + 4 and...Ch. 3 - Show that the tangent lines to the parabola y =...Ch. 3 - Show that ddx(sin2x1+cotx+cos2x1+tanx)=cos2xCh. 3 - If f(x)=limtxsectsecxtx, find the value of f'(/4).Ch. 3 - Find the values of the constants a and b such that...Ch. 3 - Show that sin-1(tanh x) = tan1(sinh x).Ch. 3 - A car is traveling at night along a highway shaped...Ch. 3 - Prove that dndxn(sin4x+cos4x)=4n1cos(4x+n/2).Ch. 3 - If f is differentiable at a, where a 0, evaluate...Ch. 3 - The figure shows a circle with radius 1 inscribed...Ch. 3 - Find all values of r such that the parabolas y =...Ch. 3 - How many lines are tangent to both of the circles...Ch. 3 - If f(x)=x46+x45+21+x, calculate f(46)(3). Express...Ch. 3 - The figure shows a rotating wheel with radius 40...Ch. 3 - Tangent lines T1, and T2, are drawn at two points...Ch. 3 - Show that dndxn(eaxsinbx)=rneaxsin(bx+n) where a...Ch. 3 - Evaluate limxesinx1x.Ch. 3 - Let T and N be the tangent and normal lines to the...Ch. 3 - Evaluate limx0sin(3+x)2sin9x.Ch. 3 - (a) Use the identity for tan(x y) (see Equation...Ch. 3 - Let P(x1, y1) be a point on the parabola y2 = 4px...Ch. 3 - Suppose that we replace the parabolic mirror of...Ch. 3 - If f and g are differentiable functions with f(0)...Ch. 3 - Evaluate limx0sin(a+2x)2sin(a+x)+sinax2.Ch. 3 - For what value of k does the equation e2x=kx have...Ch. 3 - For which positive numbers a is it true that ax ....Ch. 3 - If y=xa212a21arctansinxa+a21+cosx show that...Ch. 3 - Given an ellipse x2/a2 + y2/b2 = 1, where a b,...Ch. 3 - Find the two points on the curve y = x4 2x2 x...Ch. 3 - Suppose that three points on the parabola y = x2...Ch. 3 - A lattice point in the plane is a point with...Ch. 3 - A cone of radius r centimeters and height h...Ch. 3 - A container in the shape of an inverted cone has...

Find more solutions based on key concepts

Show solutions Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or gi...

Calculus: Early Transcendentals

Finding the Slope of a Graph In Exercises 916, use the limit definition to find the slope of the graph of f at ...

Calculus: An Applied Approach (MindTap Course List)

In Exercises 90-98, determine whether the statement is true or false. If it is true, explain why it is true. If...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Even and Odd Functions A function is given. (a) Use a graphing device to graph the function. (b) Determine from...

Precalculus: Mathematics for Calculus (Standalone Book)

(a) Graph the epitrochoid with equations x=11cost4cos(11t/2)y=11sint4sin(11t/2) What parameter interval gives t...

Multivariable Calculus

There exists a function f such that f(1) = 2, f(3) = 0, and f(x) 1 for all x.

Single Variable Calculus: Early Transcendentals, Volume I

Representing a Graph by a Vector-Valued Function In Exercises 13 and 14. represent the plane curve by a vector-...

Calculus: Early Transcendental Functions

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified ax...

Calculus (MindTap Course List)

Use a graph to estimate the equations of all the vertical asymptotes of the curve y=tan(2sinx)x Then find the e...

Single Variable Calculus

Graph the following points: P(4,4),Q(4,4),R(3,0),S(4,0.5),T(0.5,2.5),U(2,0),V(4,4)

Finite Mathematics and Applied Calculus (MindTap Course List)

If F is a field with positive characteristic p, prove that the set {0e=0,e,2e,3e,...,(p1)e} of multiples of the...

Elements Of Modern Algebra

In Exercises 23 to 40, let U {p, q, r, s, t}, D = (p. r, s, t}, E = {q, s), F = {p, t}, and G = {s}. Determine ...

Mathematical Excursions (MindTap Course List)

AB and EF are said to be skew lines because they neither intersect nor are parallel. How many planes are determ...

Elementary Geometry For College Students, 7e

19. Prices for goods and services tend to rise over time, and this results in the erosion of purchasing power. ...

Mathematical Applications for the Management, Life, and Social Sciences

Statistical Literacy Random sample of size 9 is taken from a normal distribution with mean 10 and standard devi...

Understanding Basic Statistics

SOC The following tables list the median family incomes for the 13 Canadian provinces and territories in 2000 a...

Essentials Of Statistics

Use inspection or the greatest common divisor to reduce the following fractions to lowest terms.
24.

Contemporary Mathematics for Business & Consumers

For Problems 21 and 22, translate the English phrase into an algebraic expression using n to represent the unkn...

Intermediate Algebra

Writhe each number in scientific notation: 377,000

Elementary Technical Mathematics

Area of a Circle The formula for the area A of a circle with radius r can be written with function notation as ...

Trigonometry (MindTap Course List)

A sample of n = 10 automobiles was selected, and each was subjected to a 5-mph crash test. Denoting a car with ...

Probability and Statistics for Engineering and the Sciences

By any method, determine all possible real solutions of each equation in Exercises 1330. Check your answers by ...

Finite Mathematics

Find the mean, median, and mode for the following scores; 8, 7, 5, 7, 0, 10, 2, 4, 11, 7, 8, 7

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

] 5. Two separate samples, each with n=15 individuals, receive different treatments. After treatment, the first...

Statistics for The Behavioral Sciences (MindTap Course List)

Evaluating a Definite Integral In Exercises 57-72, evaluate the definite integral. Use a graphing utility to ve...

Calculus of a Single Variable

PUTNAM EXAM CHALLENGE Let A be the area of the region in the first quadrant bounded by the line y=12x, the x-ax...

Calculus: Early Transcendental Functions (MindTap Course List)

In Exercises 27 to 32, use SSS, SAS, ASA, or AAS to prove that the triangles are congruent. Given: VRSTSR and R...

Elementary Geometry for College Students

CAR THEFT Figures obtained from a citys police department indicate that of all the motor vehicles reported as s...

Finite Mathematics for the Managerial, Life, and Social Sciences

2
1
0
does not exist

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Finding Partial Derivatives In Exercises 11-40, find both first partial derivatives. f(x,y)=2x5y+3

Multivariable Calculus

Use the method of undetermined coefficients to solve y″ − 6y′ + 5y = −6e2x.
y = c1ex + c2e5x − 4e2x
y = c1ex + ...

Study Guide for Stewart's Multivariable Calculus, 8th

Maximizing height A ball is thrown straight up from the top of a building 144 ft. tall with an initial velocity...

College Algebra (MindTap Course List)

The Big Bang Theory, a situation comedy featuring Johnny Galecki, Jim Parsons, and Kaley Cuoco-Sweeting, is one...

Statistics for Business & Economics, Revised (MindTap Course List)

For each of the values in the following table, the true value and measured value are given. Determine the absol...

Mathematics For Machine Technology

Use the density curve of x = distance of actual landfall from predicted landfall from the previous exercise to ...

Introduction To Statistics And Data Analysis

A survey conducted by the American Automobile Association showed that a family of four spends an average of 215...

STATISTICS F/BUSINESS+ECONOMICS-TEXT

Describe the characteristics of a within-subjects experimental research design.

Research Methods for the Behavioral Sciences (MindTap Course List)

A clinical researcher has developed a new test for measuring impulsiveness and would like to determine the vali...

Research Methods for the Behavioral Sciences (MindTap Course List)

Using a Logistic Equation In Exercises 47 and 48, the logistic equation models the growth of a population. Use ...

Calculus (MindTap Course List)