Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 33, Problem 38AP

One goal of the Russian space program is to illuminate dark northern cities with sunlight reflected to the Earth from a 200-m diameter mirrored surface in orbit. Several smaller prototypes have already been constructed and put into orbit. (a) Assume that sunlight with intensity 1 370 W/m2 falls on the mirror nearly perpendicularly and that the atmosphere of the Earth allows 74.6% of the energy of sunlight to pass though it in clear weather. What is the power received by a city when the space mirror is reflecting light to it? (b) The plan is for the reflected sunlight to cover a circle of diameter 8.00 km. What is the intensity of light (the average magnitude of the Poynting vector) received by the city? (c) This intensity is what percentage of the vertical component of sunlight at St. Petersburg in January, when the sun reaches an angle of 7.00° above the horizon at noon?

Blurred answer
Students have asked these similar questions
The average intensity of the solar radiation that strikes normally on a surface just outside Earth’s atmosphere is 1.4 kW/m2. (a) What radiation pressure pr is exerted on this surface, assuming complete absorption? (b) For comparison, find the ratio of pr to Earth’s sea-level atmospheric pressure, which is 1.0 * 10^5 Pa.
A space probe which is a distance of 2.6×1010 mm from a star measures the total intensity of electromagnetic radiation from the star to be 5300 W/m^2 .   If the star radiates uniformly in all directions, what is its total average power output?
A uniform beam of laser light has a circular cross section of diameter d = 7.5 mm. The beam’s power is P = 4.9 mW. (a)  Calculate the intensity, I, of the beam in units of W / m2.  (b)  The laser beam is incident on a material that completely absorbs the radiation. How much energy, ΔU, in joules, is delivered to the material during a time interval of Δt = 0.89 s?   (c)  Use the intensity of the beam, I, to calculate the amplitude of the electric field, E0, in volts per meter.    (d)  Calculate the amplitude of the magnetic field, B0, in teslas.

Chapter 33 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY