University Physics (14th Edition)
University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 34, Problem 34.89P

As shown in Fig. P34.89, the candle is at the center of curvature of the concave mirror, whose focal length is 10.0 cm. The converging lens has a focal length of 32.0 cm and is 85.0 cm to the right of the candle. The candle is viewed looking through the lens from the right. The lens forms two images of the candle. The first is formed by light passing directly through the lens. The second image is formed from the light that goes from the candle to the mirror, is reflected, and then passes through the lens. (a) For each of these two images, draw a principal-ray diagram that locates the image. (b) For each image, answer the following questions: (i) Where is the image? (ii) Is the image real or virtual? (iii) Is the image erect or inverted with respect to the original object?

Figure P34.89

Chapter 34, Problem 34.89P, As shown in Fig. P34.89, the candle is at the center of curvature of the concave mirror, whose focal

Blurred answer
Students have asked these similar questions
You are trying to photograph a bird sitting on a tree branch, but a tall hedge is blocking your view. However, as the drawing shows, a plane mirror reflects light from the bird into your camera. If x = 3.4 m and y = 4.8 m in the drawing, for what distance must you set the focus of the camera lens in order to snap a sharp picture of the bird's image?
A small bead 2.75 [mm] in size is located 21.0 [cm] from the center of a CONVEX spherical mirror with radius of curvature of 16.0 [cm] along the optical axis. What is the location, height, and orientation of the image of the bead?A. Image location: -0.173 [mm]; Height: 0.0226 [mm]; Orientation: InvertedB. Image location: -0.173 [mm]; Height: 0.0226 [mm]; Orientation: UprightC. Image location: -5.79 [cm]; Height: 0.759 [mm]; Orientation: InvertedD. Image location: -5.79 [cm]; Height: 0.759 [mm]; Orientation: UprightPlease show solutions on paper
A small bead 2.75 mm in size is located 21.0 cm from the center of a convex spherical mirror with radius of curvature of 16.0 cm along the optical axis. What is the location, height, and orientation of the image of the bead? A. Image location: -0.173 mm; Height: 0.0226 mm; Orientation: InvertedB. Image location: -0.173 mm; Height: 0.0226 mm; Orientation: UprightC. Image location: -5.79 cm; Height: 0.759 mm; Orientation: InvertedD. Image location: -5.79 cm; Height: 0.759 mm; Orientation: Upright

Chapter 34 Solutions

University Physics (14th Edition)

Ch. 34 - A person looks at his reflection in the concave...Ch. 34 - In Example 34.4 (Section 34.2), there appears to...Ch. 34 - Suppose that in the situation of Example 34.7 of...Ch. 34 - The bottom of the passenger-side mirror on your...Ch. 34 - How could you very quickly make an approximate...Ch. 34 - The focal length of a simple lens depends on the...Ch. 34 - When a converging lens is immersed in water, does...Ch. 34 - A spherical air bubble in water can function as a...Ch. 34 - Can an image formed by one reflecting or...Ch. 34 - If a piece of photographic film is placed at the...Ch. 34 - According to the discussion in Section 34.2, light...Ch. 34 - Youve entered a survival contest that will include...Ch. 34 - BIO You cant see clearly underwater with the naked...Ch. 34 - Prob. Q34.24DQCh. 34 - A candle 4.85 cm tall is 39.2 cm to the left of a...Ch. 34 - The image of a tree just covers the length of a...Ch. 34 - A pencil that is 9.0 cm long is held perpendicular...Ch. 34 - A concave mirror has a radius of curvature of 34.0...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - The diameter of Mars is 6794 km, and its minimum...Ch. 34 - An object is 18.0 cm from the center of a...Ch. 34 - Prob. 34.9ECh. 34 - You hold a spherical salad bowl 60 cm in front of...Ch. 34 - A spherical, concave shaving mirror has a radius...Ch. 34 - For a concave spherical mirror that has focal...Ch. 34 - Dental Mirror. A dentist uses a curved mirror to...Ch. 34 - For a convex spherical mirror that has focal...Ch. 34 - The thin glass shell shown in Fig. E34.15 has a...Ch. 34 - A tank whose bottom is a minor is filled with...Ch. 34 - A speck of dirt is embedded 3.50 cm below the...Ch. 34 - A transparent liquid fills a cylindrical tank to a...Ch. 34 - A person swimming 0.80 m below the surface of the...Ch. 34 - Prob. 34.20ECh. 34 - A Spherical Fish Bowl. A small tropical fish is at...Ch. 34 - The left end of a long glass rod 6.00 cm in...Ch. 34 - Prob. 34.23ECh. 34 - The left end of a long glass rod 8.00 cm in...Ch. 34 - Repeat Exercise 34.24 for the case in which the...Ch. 34 - The glass rod of Exercise 34.25 is immersed in a...Ch. 34 - An insect 3.75 mm tall is placed 22.5 cm to the...Ch. 34 - A lens forms an image of an object. The object is...Ch. 34 - A converging meniscus lens (see Fig. 34.32a) with...Ch. 34 - A converging lens with a focal length of 70.0 cm...Ch. 34 - A converging lens forms an image of an...Ch. 34 - A photographic slide is to the left of a lens. The...Ch. 34 - A double-convex thin lens has surfaces with equal...Ch. 34 - A converging lens with a focal length of 9.00 cm...Ch. 34 - BIO The Cornea As a Simple Lens. The cornea...Ch. 34 - A lensmaker wants to make a magnifying glass from...Ch. 34 - For each thin lens shown in Fig. E34.37, calculate...Ch. 34 - A converging lens with a focal length of 12.0 cm...Ch. 34 - Repeat Exercise 34.38 for the case in which the...Ch. 34 - An object is 16.0 cm to the left of a lens. The...Ch. 34 - Combination of Lenses I. A 1.20-cm-tall object is...Ch. 34 - Combination of Lenses II. Repeat Exercise 34.41...Ch. 34 - Combination of Lenses III. Two thin lenses with a...Ch. 34 - BIO The Lens or the Eye. The crystalline lens of...Ch. 34 - A camera lens has a focal length of 200 mm. How...Ch. 34 - You wish to project the image of a slide on a...Ch. 34 - When a camera is focused, the lens is moved away...Ch. 34 - Zoom Lens. Consider the simple model of the zoom...Ch. 34 - A camera lens has a focal length of 180.0 mm and...Ch. 34 - BIO Curvature of the Cornea. In a simplified model...Ch. 34 - BIO (a) Where is the near point of an eye for...Ch. 34 - BIO Contact Lenses. Contact lenses are placed...Ch. 34 - BIO Ordinary Glasses. Ordinary glasses are worn in...Ch. 34 - BIO A person can see clearly up close but cannot...Ch. 34 - BIO If the person in Exercise 34.54 chooses...Ch. 34 - A thin lens with a focal length of 6.00 cm is used...Ch. 34 - The focal length of a simple magnifier is 8.00 cm....Ch. 34 - You want to view through a magnifier an insect...Ch. 34 - The focal length of the eyepiece of a certain...Ch. 34 - Resolution of a Microscope. The image formed by a...Ch. 34 - A telescope is constructed from two lenses with...Ch. 34 - The eyepiece of a refracting telescope (see Fig....Ch. 34 - A reflecting telescope (Fig. E34.63) is to be made...Ch. 34 - What is the size of the smallest vertical plane...Ch. 34 - If you run away from a plane mirror at 3.60 m/s,...Ch. 34 - Where must you place an object in front of a...Ch. 34 - Prob. 34.67PCh. 34 - A light bulb is 3.00 m from a wall. You are to use...Ch. 34 - CP CALC You are in your car driving on a highway...Ch. 34 - A layer of benzene (n = 1.50) that is 4.20 cm deep...Ch. 34 - Rear-View Mirror. A mirror on the passenger side...Ch. 34 - Figure P34.72 shows a small plant near a thin...Ch. 34 - Pinhole Camera. A pinhole camera is just a...Ch. 34 - A microscope is focused on the upper surface of a...Ch. 34 - What should be the index of refraction of a...Ch. 34 - A Glass Rod. Both ends of a glass rod with index...Ch. 34 - (a) You want to use a lens with a focal length of...Ch. 34 - Autocollimation. You place an object alongside a...Ch. 34 - A lens forms a real image that is 214 cm away from...Ch. 34 - Figure P34.80 shows an object and its image formed...Ch. 34 - Figure P34.81 shows an object and its image formed...Ch. 34 - A transparent rod 30.0 cm long is cut flat at one...Ch. 34 - BIO Focus of the Eye. The cornea of the eye has a...Ch. 34 - The radii of curvature of the surfaces of a thin...Ch. 34 - An object to the left of a lens is imaged by the...Ch. 34 - An object is placed 22.0 cm from a screen. (a) At...Ch. 34 - A convex mirror and a concave mirror are placed on...Ch. 34 - A screen is placed a distance d to the right of an...Ch. 34 - As shown in Fig. P34.89, the candle is at the...Ch. 34 - Two Lenses in Contact. (a) Prove that when two...Ch. 34 - When an object is placed at the proper distance to...Ch. 34 - (a) Repeat the derivation of Eq. (34.19) for the...Ch. 34 - A convex spherical mirror with a focal length of...Ch. 34 - BIO What Is the Smallest Thing We Can See? The...Ch. 34 - Three thin lenses, each with a focal length of...Ch. 34 - A camera with a 90-mm-focal-length lens is focused...Ch. 34 - BIO In one form of cataract surgery the persons...Ch. 34 - BIO A Nearsighted Eye. A certain very nearsighted...Ch. 34 - BIO A person with a near point of 85 cm, but...Ch. 34 - The Galilean Telescope. Figure P34.100 is a...Ch. 34 - Focal Length of a Zoom Lens. Figure P34.101 shows...Ch. 34 - DATA In setting up an experiment for a high school...Ch. 34 - DATA It is your first day at work as a summer...Ch. 34 - Prob. 34.104PCh. 34 - CALC (a) For a lens with focal length f, find the...Ch. 34 - An Object at an Angle. A 16.0-cm-long pencil is...Ch. 34 - BIO People with normal vision cannot focus their...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - Given that frogs are nearsighted in air, which...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY