UNIVERSITY PHYSICS V.2 W/ACCESS >IC<
UNIVERSITY PHYSICS V.2 W/ACCESS >IC<
14th Edition
ISBN: 9781323631638
Author: YOUNG
Publisher: PEARSON C
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 35, Problem 35.2E

Two speakers that are 15.0 m apart produce in-phase sound waves of frequency 250.0 Hz in a room where the speed of sound is 340.0 m/s. A woman starts out at the midpoint between the two speakers. The room’s walls and ceiling are covered with absorbers to eliminate reflections, and she listens with only one ear for best precision. (a) What does she hear: constructive or destructive interference? Why? (b) She now walks slowly toward one of the speakers. How far from the center must she walk before she first hears the sound reach a minimum intensity? (c) How far from the center must she walk before she first hears the sound maximally enhanced?

Blurred answer
Students have asked these similar questions
Two loudspeakers are placed above and below each other, as in Figure P14.40 and driven by the same source at a frequency of 4.50 x 102 Hz. An observer is in front of the speakers (to the right) at point O, at the same distance from each speaker. What minimum vertical distance upward should the top speaker be moved to create destructive interference at point O?
Two loudspeakers, placed on opposite walls of a 10m long room, emit pure sine waves at f= 170 Hz coherently. If we were exactly in the middle of the room, where the interference of waves is constructive, what is the shortest distance we should travel towards one of the speakers so that the waves cancel out completely?" Assume that the speed of sound at air is 340 m/s.
Two identical loudspeakers 2.0 m apart are emitting 1800 Hz sound waves into a room where the speed of sound is 340 m/s. Is the point 4.0 m directlyin front of one of the speakers, perpendicular to the line joining the speakers, a point of maximum constructive interference, perfect destructive interference, or something in between?

Chapter 35 Solutions

UNIVERSITY PHYSICS V.2 W/ACCESS >IC<

Ch. 35 - If the monochromatic light shown in Fig. 35.5a...Ch. 35 - In using the superposition principle to calculate...Ch. 35 - Prob. Q35.13DQCh. 35 - A very thin soap film (n = 1.33), whose thickness...Ch. 35 - Interference can occur in thin films. Why is it...Ch. 35 - If we shine while light on an air wedge like that...Ch. 35 - Prob. Q35.17DQCh. 35 - When a thin oil film spreads out on a puddle of...Ch. 35 - Section 35.1 Interference and Coherent Sources...Ch. 35 - Two speakers that are 15.0 m apart produce...Ch. 35 - A radio transmitting station operating at a...Ch. 35 - Radio Interference. Two radio antennas A and B...Ch. 35 - Prob. 35.5ECh. 35 - Two light sources can be adjusted to emit...Ch. 35 - Section 35.2 Two-Source Interference of Light...Ch. 35 - Coherent light with wavelength 450 nm falls on a...Ch. 35 - Two slits spaced 0.450 mm apart are placed 75.0 cm...Ch. 35 - If the entire apparatus of Exercise 35.9 (slits,...Ch. 35 - Two thin parallel slits that are 0.0116 mm apart...Ch. 35 - Coherent light with wavelength 400 nm passes...Ch. 35 - Two very narrow slits are spaced 1.80 m apart and...Ch. 35 - Coherent light that contains two wavelengths. 660...Ch. 35 - Coherent light with wavelength 600 nm passes...Ch. 35 - Coherent light of frequency 6.32 1014 Hz passes...Ch. 35 - In a two-slit interference pattern, the intensity...Ch. 35 - Coherent sources A and B emit electromagnetic...Ch. 35 - Coherent light with wavelength 500 nm passes...Ch. 35 - Two slits spaced 0.260 mm apart are 0.900 m from a...Ch. 35 - Consider two antennas separated by 9.00 m that...Ch. 35 - Two slits spaced 0.0720 mm apart are 0.800 m from...Ch. 35 - What is the thinnest film of a coating with n =...Ch. 35 - Nonglare Glass. When viewing a piece of art that...Ch. 35 - Two rectangular pieces of plane glass are laid one...Ch. 35 - A place of glass 9.00 cm long is placed in contact...Ch. 35 - A uniform film of TiO2, 1036 nm thick and having...Ch. 35 - A plastic film with index of refraction 1.70 is...Ch. 35 - The walls of a soap bubble have about the same...Ch. 35 - A researcher measures the thickness of a layer of...Ch. 35 - Prob. 35.31ECh. 35 - What is the thinnest soap film (excluding the case...Ch. 35 - How far must the mirror M2 (see Fig. 35.19) of the...Ch. 35 - Jan first uses a Michelson interferometer with the...Ch. 35 - One round face of a 3.25-m, solid, cylindrical...Ch. 35 - Newtons rings are visible when a planoconvex lens...Ch. 35 - BIO Coating Eyeglass Lenses. Eyeglass lenses can...Ch. 35 - BIO Sensitive Eyes. After an eye examination, you...Ch. 35 - Two flat plates of glass with parallel faces are...Ch. 35 - In a setup similar to that of Problem 35.39, the...Ch. 35 - Suppose you illuminate two thin slits by...Ch. 35 - CP CALC A very thin sheet of brass contains two...Ch. 35 - Two radio antennas radiating in phase are located...Ch. 35 - Prob. 35.44PCh. 35 - CP A thin uniform film of refractive index 1.750...Ch. 35 - GPS Transmission. The GPS (Global Positioning...Ch. 35 - White light reflects at normal incidence from the...Ch. 35 - Laser light of wavelength 510 nm is traveling in...Ch. 35 - Red light with wavelength 700 nm is passed through...Ch. 35 - BIO Reflective Coatings and Herring. Herring and...Ch. 35 - After a laser beam passes through two thin...Ch. 35 - DATA In your summer job at an optics company, you...Ch. 35 - DATA Short-wave radio antennas A and B are...Ch. 35 - DATA In your research lab, a very thin, flat piece...Ch. 35 - CP The index of refraction of a glass rod is 1.48...Ch. 35 - CP Figure P35.56 shows an interferometer known as...Ch. 35 - INTERFERENCE AND SOUND WAVES. Interference occurs...Ch. 35 - The professor returns the apparatus to the...Ch. 35 - The professor again returns the apparatus to its...Ch. 35 - The professor once again returns the apparatus to...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY