Introduction to mathematical programming
Introduction to mathematical programming
4th Edition
ISBN: 9780534359645
Author: Jeffrey B. Goldberg
Publisher: Cengage Learning
bartleby

Concept explainers

Expert Solution & Answer
Book Icon
Chapter 3.5, Problem 5P

Explanation of Solution

Formulation of LP:

Let,

Shift 1 = 12AM‑6AM

Shift 2 = 6AM‑12PM

Shift 3 = 12PM‑ 6PM

Shift 4 = 6PM‑12AM

Let xij= workers working shifts i and j.

The objective of the LP is to minimize the cost of meeting the daily workforce demands of the Gotham City Police Department.

Then the LP becomes,

Minimize, z = 144(x12+x14+x23 +x34)+ 216(x13+x24)

Subject to the constraints,

x12 + x13

Blurred answer
Students have asked these similar questions
A company uses four special tank trucks to deliver four different gasoline products to customers. Eachtank has five compartments with capacities: 500, 750, 1200, 1500, and 1750 gallons. The daily demands forthe four products are 10000, 15000, 12000, and 8000 gallons. Any quantities that cannot be delivered by thecompany’s four trucks must be subcontracted at the additional costs of 5, 12, 8, and 10 cents per gallon forproducts 1, 2, 3, and 4, respectively. The goal is to develop the optimal daily loading schedule for the fourtrucks that will minimize the additional cost of subcontracting. Formulate this problem as an integer linearprogram, and solve it (not by hand).
Six months before its annual convention, the AmericanMedical Association must determine how many rooms toreserve. At this time, the AMA can reserve rooms at a costof $50 per room. The AMA must pay the $50 room costeven if the room is not occupied. The AMA believes that thenumber of doctors attending the convention will be normallydistributed, with a mean of 5,000 and a standard deviationof 1,000. If the number of people attending the conventionexceeds the number of rooms reserved, extra rooms must bereserved at a cost of $80 per room. Use simulation todetermine the number of rooms that should be reserved tominimize the expected cost to the AMA.
A farmer is planning to raise wheat and barley. Each acre of wheat yields a profit of $50, and each acre of barley yields a profit of $70. To sow the crop, two machines, a tractor and a tiller are rented. The tractor is available for 150 hours, and the tiller is available for 200 hours. Sowing an acre of wheat requires 4 hours of tractor time and 1 hour of tilling. Sowing an acre of barley requires 3 hours of tractor time and 2 hours of tilling. How many acres of each crop should be planted to maximize the farmer’s profit? (Let W be the number of acres of wheat to be planted, B the number of acres of barley to be planted and P the profit) What is the objective function for the problem? Excluding the non-negative constraint, how many constraints does the problem have? What is the linear programming model of the problem? In the initial tableau, what is the leaving variable? What is the pivot element in the initial tableau? What is the optimal solution to the problem? After how many…

Chapter 3 Solutions

Introduction to mathematical programming

Ch. 3.2 - Prob. 6PCh. 3.3 - Prob. 1PCh. 3.3 - Prob. 2PCh. 3.3 - Prob. 3PCh. 3.3 - Prob. 4PCh. 3.3 - Prob. 5PCh. 3.3 - Prob. 6PCh. 3.3 - Prob. 7PCh. 3.3 - Prob. 8PCh. 3.3 - Prob. 9PCh. 3.3 - Prob. 10PCh. 3.4 - Prob. 1PCh. 3.4 - Prob. 2PCh. 3.4 - Prob. 3PCh. 3.4 - Prob. 4PCh. 3.5 - Prob. 1PCh. 3.5 - Prob. 2PCh. 3.5 - Prob. 3PCh. 3.5 - Prob. 4PCh. 3.5 - Prob. 5PCh. 3.5 - Prob. 6PCh. 3.5 - Prob. 7PCh. 3.6 - Prob. 1PCh. 3.6 - Prob. 2PCh. 3.6 - Prob. 3PCh. 3.6 - Prob. 4PCh. 3.6 - Prob. 5PCh. 3.7 - Prob. 1PCh. 3.8 - Prob. 1PCh. 3.8 - Prob. 2PCh. 3.8 - Prob. 3PCh. 3.8 - Prob. 4PCh. 3.8 - Prob. 5PCh. 3.8 - Prob. 6PCh. 3.8 - Prob. 7PCh. 3.8 - Prob. 8PCh. 3.8 - Prob. 9PCh. 3.8 - Prob. 10PCh. 3.8 - Prob. 11PCh. 3.8 - Prob. 12PCh. 3.8 - Prob. 13PCh. 3.8 - Prob. 14PCh. 3.9 - Prob. 1PCh. 3.9 - Prob. 2PCh. 3.9 - Prob. 3PCh. 3.9 - Prob. 4PCh. 3.9 - Prob. 5PCh. 3.9 - Prob. 6PCh. 3.9 - Prob. 7PCh. 3.9 - Prob. 8PCh. 3.9 - Prob. 9PCh. 3.9 - Prob. 10PCh. 3.9 - Prob. 11PCh. 3.9 - Prob. 12PCh. 3.9 - Prob. 13PCh. 3.9 - Prob. 14PCh. 3.10 - Prob. 1PCh. 3.10 - Prob. 2PCh. 3.10 - Prob. 3PCh. 3.10 - Prob. 4PCh. 3.10 - Prob. 5PCh. 3.10 - Prob. 6PCh. 3.10 - Prob. 7PCh. 3.10 - Prob. 8PCh. 3.10 - Prob. 9PCh. 3.11 - Prob. 1PCh. 3.11 - Show that Fincos objective function may also be...Ch. 3.11 - Prob. 3PCh. 3.11 - Prob. 4PCh. 3.11 - Prob. 7PCh. 3.11 - Prob. 8PCh. 3.11 - Prob. 9PCh. 3.12 - Prob. 2PCh. 3.12 - Prob. 3PCh. 3.12 - Prob. 4PCh. 3 - Prob. 1RPCh. 3 - Prob. 2RPCh. 3 - Prob. 3RPCh. 3 - Prob. 4RPCh. 3 - Prob. 5RPCh. 3 - Prob. 6RPCh. 3 - Prob. 7RPCh. 3 - Prob. 8RPCh. 3 - Prob. 9RPCh. 3 - Prob. 10RPCh. 3 - Prob. 11RPCh. 3 - Prob. 12RPCh. 3 - Prob. 13RPCh. 3 - Prob. 14RPCh. 3 - Prob. 15RPCh. 3 - Prob. 16RPCh. 3 - Prob. 17RPCh. 3 - Prob. 18RPCh. 3 - Prob. 19RPCh. 3 - Prob. 20RPCh. 3 - Prob. 21RPCh. 3 - Prob. 22RPCh. 3 - Prob. 23RPCh. 3 - Prob. 24RPCh. 3 - Prob. 25RPCh. 3 - Prob. 26RPCh. 3 - Prob. 27RPCh. 3 - Prob. 28RPCh. 3 - Prob. 29RPCh. 3 - Prob. 30RPCh. 3 - Prob. 31RPCh. 3 - Prob. 32RPCh. 3 - Prob. 33RPCh. 3 - Prob. 34RPCh. 3 - Prob. 35RPCh. 3 - Prob. 36RPCh. 3 - Prob. 37RPCh. 3 - Prob. 38RPCh. 3 - Prob. 39RPCh. 3 - Prob. 40RPCh. 3 - Prob. 41RPCh. 3 - Prob. 42RPCh. 3 - Prob. 43RPCh. 3 - Prob. 44RPCh. 3 - Prob. 45RPCh. 3 - Prob. 46RPCh. 3 - Prob. 47RPCh. 3 - Prob. 48RPCh. 3 - Prob. 49RPCh. 3 - Prob. 50RPCh. 3 - Prob. 51RPCh. 3 - Prob. 52RPCh. 3 - Prob. 53RPCh. 3 - Prob. 54RPCh. 3 - Prob. 56RPCh. 3 - Prob. 57RPCh. 3 - Prob. 58RPCh. 3 - Prob. 59RPCh. 3 - Prob. 60RPCh. 3 - Prob. 61RPCh. 3 - Prob. 62RPCh. 3 - Prob. 63RP
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole