Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 36, Problem 22P

An oil film (n = 1.45) floating on water is illuminated by white light at normal incidence. The film is 280 nm thick. Find (a) the wavelength and color of the light in the visible spectrum most strongly reflected and (b) the wavelength and color of the light in the spectrum most strongly transmitted. Explain your reasoning.

(a)

Expert Solution
Check Mark
To determine
The wavelength and the color of the light in the visible spectrum most strongly reflected.

Answer to Problem 22P

The value of wavelength of the light for m=1 is 541.33nm and the colour of the light in the visible spectrum most strongly reflected is green.

Explanation of Solution

Given Information: The refractive index of the oil film is 1.45 , thickness of the film is 280nm .

It is given that an oil film floating on water is illuminated by white light at normal incidence as shown in figure given below.

Physics for Scientists and Engineers, Chapter 36, Problem 22P

Figure (1)

For most strongly reflected waves:

Write the expression for the constructive interference in thin film.

2μoilt=(m+12)λ (1)

Here,

μoil is the refractive index of the oil film.

λ is the value of wavelength of the light.

t is the thickness of the film.

m is the order number.

From equation (1), formula to calculate the value of wavelength of the light is,

λ=2μoilt(m+12) (2)

From equation (2), formula to calculate the value of wavelength of the light for m=0 is,

λ0=2μoilt(m+12) (3)

Here,

λ0 is the value of wavelength of the light for m=0 .

Substitute 0 for m , 1.45 for μoil , 280nm for t in equation (3) to find λ0 ,

λ0=2×1.45×280nm(0+12)=1624nm

The range for the wavelength of the visible light is 390nm to 700nm .

Thus, the value of wavelength of the light for m=0 is 1624nm and the colour of the light in the invisible spectrum is infared.

From equation (2), formula to calculate the value of wavelength of the light for m=1 is,

λ1=2μoilt(m+12) (4)

Here,

λ1 is the value of wavelength of the light for m=1 .

Substitute 1 for m , 1.45 for μoil , 280nm for t in equation (4) to find λ1 ,

λ1=2×1.45×280nm(1+12)=541.33nm

Thus, the value of wavelength of the light for m=1 is 541.33nm and the colour of the light in the visible spectrum is green.

From equation (2), formula to calculate the value of wavelength of the light for m=2 is,

λ2=2μoilt(m+12) (4)

Here,

λ2 is the value of wavelength of the light for m=2 .

Substitute 1 for m , 1.45 for μoil , 280nm for t in equation (4) to find λ2 ,

λ2=2×1.45×280nm(2+12)=324.8nm325nm

Thus, the value of wavelength of the light for m=2 is 325nm and the colour of the light in the invisible spectrum is ultraviolet.

Conclusion:

Therefore, the value of wavelength of the light for m=1 is 541.33nm and the colour of the light in the visible spectrum most strongly reflected is green.

(b)

Expert Solution
Check Mark
To determine
The wavelength and the color of the light in the spectrum most strongly transmitted.

Answer to Problem 22P

The value of wavelength of the light for m=1 is 271nm and the colour of the light in the visible spectrum most strongly transmitted is violet.

Explanation of Solution

Given Information: The refractive index of the oil film is 1.45 , thickness of the film is 280nm .

For most strongly transmitted waves:

Write the expression for the destructive interference in thin film.

2μoilt=mλ (5)

From equation (5), formula to calculate the value of wavelength of the light is,

λ=2μoiltm (6)

From equation (6), formula to calculate the value of wavelength of the light for m=1 is,

λ0=2μoiltm (7)

Here,

λ0 is the value of wavelength of the light for m=1 .

Substitute 1 for m , 1.45 for μoil , 280nm for t in equation (7) to find λ0 ,

λ0=2×1.45×280nm1=812nm

Thus, the value of wavelength of the light for m=1 is 812nm and the colour of the light in the invisible spectrum is infared.

From equation (6), formula to calculate the value of wavelength of the light for m=2 is,

λ1=2μoiltm (8)

Here,

λ1 is the value of wavelength of the light for m=2 .

Substitute 2 for m , 1.45 for μoil , 280nm for t in equation (8) to find λ1 ,

λ1=2×1.45×280nm2=406nm

Thus, the value of wavelength of the light for m=2 is 406nm and the colour of the light in the visible spectrum is violet.

From equation (6), formula to calculate the value of wavelength of the light for m=3 is,

λ2=2μoiltm (9)

Here,

λ2 is the value of wavelength of the light for m=3 .

Substitute 3 for m , 1.45 for μoil , 280nm for t in equation (9) to find λ2 ,

λ2=2×1.45×280nm3=270.666nm271nm

Thus, the value of wavelength of the light for m=3 is 271nm and the colour of the light in the invisible spectrum is ultraviolet.

Conclusion:

Therefore, the value of wavelength of the light for m=1 is 271nm and the colour of the light in the visible spectrum most strongly transmitted is violet.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A thin film of oil (n = 1.44) of thickness 436 nm with air on both sides is illuminated with white light at normal incidence. Determine the most strongly and the most weakly reflected wavelengths in the range 482 nm to 653 nm. (Enter your answers in (a) the most strongly reflected  nm nm.) (b) the most weakly reflected  nm
Laser light of wavelength 460 nmnm is traveling in air and shines at normal incidence onto the flat end of a transparent plastic rod that has nn = 1.30. The end of the rod has a thin coating of a transparent material that has refractive index 1.75.    a)What is the minimum (nonzero) thickness of the coating for which there is maximum transmission of the light into the rod?  b)What is the minimum (nonzero) thickness of the coating for which transmission into the rod is minimized?
A thin film of glycerin (n = 1.473) of thickness 525 nm with air on both sides is illuminated with white light at near normal incidence. What wavelengths will be strongly reflected in the range 300 nm to 700 nm? answer nm (smallest value) answer nm answer nm (largest value)

Chapter 36 Solutions

Physics for Scientists and Engineers

Ch. 36 - A student holds a laser that emits light of...Ch. 36 - Coherent light rays of wavelength strike a pair...Ch. 36 - In Figure P36.10 (not to scale), let L = 1.20 m...Ch. 36 - You are working in an optical research laboratory....Ch. 36 - You are operating a new radio telescope that has...Ch. 36 - In the double-slit arrangement of Figure P36.13, d...Ch. 36 - Monochromatic light of wavelength is incident on...Ch. 36 - Prob. 15PCh. 36 - Show that the distribution of intensity in a...Ch. 36 - Green light ( = 546 nm) illuminates a pair of...Ch. 36 - Monochromatic coherent light of amplitude E0 and...Ch. 36 - A material having an index of refraction of 1.30...Ch. 36 - A soap bubble (n = 1.33) floating in air has the...Ch. 36 - A film of MgF2 (n = 1.38) having thickness 1.00 ...Ch. 36 - An oil film (n = 1.45) floating on water is...Ch. 36 - When a liquid is introduced into the air space...Ch. 36 - You are working as an expert witness for an...Ch. 36 - Astronomers observe the chromosphere of the Sun...Ch. 36 - A lens made of glass (ng = 1.52) is coated with a...Ch. 36 - Mirror M1 in Figure 36.13 is moved through a...Ch. 36 - Radio transmitter A operating at 60.0 MHz is 10.0...Ch. 36 - In an experiment similar to that of Example 36.1,...Ch. 36 - In the What If? section of Example 36.2, it was...Ch. 36 - Two coherent waves, coming from sources at...Ch. 36 - Raise your hand and hold it flat. Think of the...Ch. 36 - In a Youngs double-slit experiment using light of...Ch. 36 - Review. A flat piece of glass is held stationary...Ch. 36 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 36 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 36 - In a Newtons-rings experiment, a plano-convex...Ch. 36 - Measurements are made of the intensity...Ch. 36 - A plano-concave lens having index of refraction...Ch. 36 - Why is the following situation impossible? A piece...Ch. 36 - Interference fringes are produced using Lloyds...Ch. 36 - A plano-convex lens has index of refraction n. The...Ch. 36 - Prob. 43APCh. 36 - Prob. 44APCh. 36 - Astronomers observe a 60.0-MHz radio source both...Ch. 36 - Prob. 46CPCh. 36 - Our discussion of the techniques for determining...Ch. 36 - The condition for constructive interference by...Ch. 36 - Both sides of a uniform film that has index of...Ch. 36 - Slit 1 of a double-slit is wider than slit 2 so...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY