Physics For Scientists And Engineers
Physics For Scientists And Engineers
6th Edition
ISBN: 9781429201247
Author: Paul A. Tipler, Gene Mosca
Publisher: W. H. Freeman
bartleby

Videos

Question
Book Icon
Chapter 37, Problem 31P

(a)

To determine

The moment of inertia and rotation energy.

(a)

Expert Solution
Check Mark

Answer to Problem 31P

The moment of inertia is 1.454×1046kgm2 and rotational energy is 0.2385meV .

Explanation of Solution

Given:

The equilibrium separation is r=0.113nm .

Formula used:

The expression for moment of inertia is given by,

  I=mCmOr2mC+mO

The expression for rotational energy is given by,

  E0r=22I

Calculation:

The moment of inertiais calculated as,

  I=mCmOr2mC+mO=( 12u)( 16u)( 12u)+( 16u)(( 0.113nm)( 10 9 m 1nm ))2(1.661× 10 27kg/u)=1.454×1046kgm2

The rotational energy is calculated as,

  E0r=22I=( 6.58× 10 16 eVs)( 1.602× 10 19 J 1eV )2( 1.454× 10 46 kg m 2 )=(( 0.2385× 10 3 eV)( 10 3 meV 1eV ))=0.2385meV

Conclusion:

Therefore, the moment of inertia is 1.454×1046kgm2 and rotational energy is 0.2385meV .

(b)

To determine

The energy level diagram.

(b)

Expert Solution
Check Mark

Answer to Problem 31P

The energy level diagram is shown in figure 1.

Explanation of Solution

Calculation:

The energy level diagram for the rotational level from l=0tol=5 is shown below,

  Physics For Scientists And Engineers, Chapter 37, Problem 31P

Figure 1

Conclusion:

Therefore, the energy level diagram is shown in figure 1.

(c)

To determine

The wavelength for each transition of part (b).

(c)

Expert Solution
Check Mark

Answer to Problem 31P

The wavelengths for each transition from start are 2.6×103m , 1.3×103m , 0.867×103m , 0.650×103m and 0.52×103m .

Explanation of Solution

Formula used:

The expression for wavelength is given by,

  λl,l1=hc2lΔE0r

Calculation:

The first wavelength is calculated as,

  λl,l1=hc2lΔE 0rλ1,0=( 4.136× 10 15 eVs)( 3.0× 10 8 m/s )2(1)( ( 0.2385meV )( 10 3 eV 1meV ))=2.6×103m

The second wavelength is calculated as,

  λl,l1=hc2lΔE 0rλ2,1=( 4.136× 10 15 eVs)( 3.0× 10 8 m/s )2(2)( ( 0.2385meV )( 10 3 eV 1meV ))=1.3×103m

The third wavelength is calculated as,

  λl,l1=hc2lΔE 0rλ3,2=( 4.136× 10 15 eVs)( 3.0× 10 8 m/s )2(3)( ( 0.2385meV )( 10 3 eV 1meV ))=0.867×103m

The fourth wavelength is calculated as,

  λl,l1=hc2lΔE 0rλ4,3=( 4.136× 10 15 eVs)( 3.0× 10 8 m/s )2(4)( ( 0.2385meV )( 10 3 eV 1meV ))=0.650×103m

The fifth wavelength is calculated as,

  λl,l1=hc2lΔE 0rλ5,4=( 4.136× 10 15 eVs)( 3.0× 10 8 m/s )2(5)( ( 0.2385meV )( 10 3 eV 1meV ))=0.52×103m

Conclusion:

Therefore, the wavelengths for each transition from start are 2.6×103m , 1.3×103m , 0.867×103m , 0.650×103m and 0.52×103m .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider a CO molecule that is initially in the ground state of n = 0, l = 0. If the energy of a vibrational transition from the n = 0 state to the n = 1 state in CO could instead be absorbed in a rotational transition, what would be the value of l for the final state?
Show that the moment of inertia of a diatomic molecule composed of atoms of masses mA and mB and bond length R is equal to meffR2, where meff = mAmB/(mA+mB).
Show that the moment of inertia of a diatomic molecule composed of atoms of masses mA and mB and bond length R is equal to meffR2, where meff = mAmB/(mA + mB).
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY