Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
bartleby

Videos

Question
Book Icon
Chapter 37, Problem 45AP

(a)

To determine

To show: The dispersion is given by dλdy=L2dm(L2+y2)32 .

(a)

Expert Solution
Check Mark

Answer to Problem 45AP

The dispersion is, dλdy=L2dm(L2+y2)32 .

Explanation of Solution

Formula to calculate the angles of bright beams diffracted from the grafting is,

dsinθ=mλ (1)

Here,

d is the spacing between adjacent slits.

m is order number of intensity maximum.

λ is wavelength of light.

θ is the angle by which ray is diffracted.

Write the expression for sine of angle θ .

sinθ=yL2+y2

Substitute yL2+y2 for sinθ in equation (1)

dyL2+y2=mλ

Differentiate the above equation with respect to y .

ddy(dyL2+y2)=ddy(mλ)

Apply product rule of differentiation to differentiate above equation.

d(L2+y2)12+(d)y(12)(L2+y2)32(0+2y)=mdλdyd(L2+y2)12(d)y2(L2+y2)32=mdλdy(d)(L2+y2)(d)y2(L2+y2)32=mdλdydλdy=L2dm(L2+y2)32

Conclusion:

Therefore, the dispersion is dλdy=L2dm(L2+y2)32 .

(b)

To determine

The dispersion in first order.

(b)

Expert Solution
Check Mark

Answer to Problem 45AP

The dispersion in first order is 3.77nm/cm .

Explanation of Solution

Given info: The mean wavelength of light is 550nm , grating is 8000ruling/cm , and screen is placed at a distance of 2.40m .

Formula to calculate the angles of bright beams diffracted from the grafting is,

dsinθ=mλ (2)

Here,

d is the spacing between adjacent slits.

m is order number of intensity maximum.

λ is wavelength of light.

θ is the angle by which ray is diffracted.

The spacing between adjacent slit is inverse of number of rulings per centimeter is,

d=18000cm=1.25×104cm

Substitute 1.25×104cm for d , 1 for m and 550nm for λ in equation (2).

1.25×104cm×102m1cm(sinθ)=1550nm×109m1nm1.25×106msinθ=550×109mθ=sin1(550×109m1.25×106m)=26.10°

For the value of y ,

tanθ=yLy=Ltanθ

Substitute 2.40m for L , and 26.1° for θ in above equation.

y=2.40tan(26.1°)=2.40m(0.489)=1.18m

Formula to calculate the dispersion is,

dλdy=L2dm(L2+y2)32

Here,

L is the distance between slits and screen.

m is order number of intensity maximum.

y is position relative to the center of a diffraction pattern.

Substitute 2.40m for L , 1 for m , 1.18m for y and 1.25×106m for d to calculate dλdy .

dλdy=(2.4m)2(1.25×106m)1((2.4m)2+(1.18m)2)32=7.2×106m(7.1524)32m=3.77107m1m×102cm1m=3.77109mcm

Further solve the above equation.

dλdy=3.77×109m×(109nm1m)cm=3.77nm/cm

Conclusion:

Therefore, the dispersion is 3.77nm/cm .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a)    What is the range of the wavelengths of light that is visible to the human eye? (b)    Longitudinal waves show regions of compression and rarefaction. Explain what is meant by a compression and a rarefaction in terms of the behaviour of air molecules.  (c)    The diagram below represents a water wave. Calculate the number of wavelengths there are between X and Y.
Let v be the wave's speed, λ its wavelength, and f its frequency. These quantities are related via the equation v=λf. Note that, if the wave speed decreases, the wavelength must also decrease for the frequency to remain constant. What is the wavelength λ of light in glass, if its wavelength in air is λ0, its speed in air is c, and its speed in the glass is v? Express your answer in terms of λ0, c, and v.   If light strikes the air/glass interface at an angle 32.0 degrees to the normal, what is the angle of reflection, θr?
Imagine you are at a location where some incident light source provides light at an intensity of 10 W/m^2 Now you move to double your distance from the light source (aka your distance is 2 times its initial value) What is the intensity of the light at this new location (in units of W/m^2, provide only the number)? hp & %23 24 7 8. 3 4. y u e r j k b .. .. * 00 In

Chapter 37 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY