Physics for Scientists and Engineers, Vol. 3
Physics for Scientists and Engineers, Vol. 3
6th Edition
ISBN: 9781429201346
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
Question
Book Icon
Chapter 38, Problem 66P

(a)

To determine

Show that the total number of energy states is 23AEF32 .

(a)

Expert Solution
Check Mark

Answer to Problem 66P

It is showed that the total number of energy states is 23AEF32 .

Explanation of Solution

Given:

The density of the electron states in a metal is g(E)=AE12 .

Formula used:

The number of energy states is given by,

  N=0EFg(E)dE

Calculation:

The number of energy states in a metal is calculated as:

  N=0 E Fg(E)dE=0EF(A E 1 2 )dE=2A3[E32]0EF=2AEF323

Conclusion:

Therefore, it is showed that the total number of energy states is 23AEF32 .

(b)

To determine

The fraction of the conduction electrons that are within kT of Fermi energy

(b)

Expert Solution
Check Mark

Answer to Problem 66P

The fraction of the conduction electrons that are within kT of Fermi energy is 32KTEF .

Explanation of Solution

Formula used:

The number of energy states is given by,

  N=0EFg(E)dE

Calculation:

The fraction of number of states that is within kT of the Fermi energy is calculated as:

  kTg( E F )N=kT ( A E F ) 1 2 23AEF 3 2 =32KTEF

Conclusion:

Therefore, the fraction of the conduction electrons that are within kT of the Fermi energy is 32KTEF .

(c)

To determine

The fraction of the conduction electrons of copper that are within kT of Fermi energy at T=300K .

(c)

Expert Solution
Check Mark

Answer to Problem 66P

The fraction of the conduction electrons of copper that are within kT of Fermi energy at T=300K is 5.51×103 .

Explanation of Solution

Formula used:

The expression forthe fraction of the conduction electrons that are within kT of the Fermi energyis given by,

  kTg(EF)N=32KTEF

Calculation:

The value of Fermi energy of copper is EF=7.04eV . The fraction of the conduction electrons of copper that are within kT of Fermi energy at T=300K is calculated as:

  kTg( E F )N=32KTEF=32( 8.62× 10 5 eV/K )×( 300K)( 7.04eV)=5.51×103

Conclusion:

Therefore, the fraction of the conduction electrons of copper that are within kT of Fermi energy at T=300K is 5.51×103 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The occupancy probability at a certain energy E1 in the valence band of a metal is 0.60 when the temperature is 300 K. Is E1 above or below the Fermi energy?
On which of the following does the interval between adjacent energy levels in the highest occupied band of a metal depend: (a) the material of which the sample is made, (b) the size of the sample, (c) the position of the level in the band, (d) the temperature of the sample, (e) the Fermi energy of the metal?
At what temperature do 1.30% of the conduction electrons in lithium (a metal) have energies greater than the Fermi energy EF, which is 4.70 eV?
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning