Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 175P

(a)

To determine

Tension in the rope.

(a)

Expert Solution
Check Mark

Answer to Problem 175P

The tension is 88N_.

Explanation of Solution

Using Newton’s second law, write the equation for force on crate on x direction.

Fx=T+fkm1gsinθ=m1ax        (I)

Here T is the tension, fk is the force due to kinetic friction, m1 is the mass of the crate, g is the acceleration due to gravity, ax is the acceleration and θ is the inclination angle

Write the equation for force in the y-direction

Fy=Nm1gcosθ=0        (II)

Here N is the normal force on the crate.

Write the equation for force on the box in x and y direction

Fx=0Fy=Tm2ay        (III)

Here m2 is the mass of the box

Solve for ax by assuming ax=ay

  m1ax=T+μkNm1gsinθ=T+μkm1gcosθm1gsinθax=(Tm1)+μkgcosθgsinθ=ay

Here μk is the coefficient of kinetic friction.

Solve for ay

  m2ay=Tm2gay=Tm2g

Eliminate ax and ay and solve for T

  gT/m2=T/m1+μkgcosθgsinθT=m1m2gm1+m2(1+sinθμkcosθ)        (III)

Conclusion:

Substitute 15kg for m1, 8kg for m2, 9.8m/s2 for g, 60° for θ and 0.30 for μk in (III)

T=(15kg)(8kg)(9.8m/s2)15kg+8kg(1+sin(60°)0.30cos60°)=88N

The tension is 88N_.

(b)

To determine

Time took by the crate to slide down the incline.

(b)

Expert Solution
Check Mark

Answer to Problem 175P

The time is 2s_

Explanation of Solution

The crate begins from rest. Then initial velocity is zero.

Refer subpart a and write the equation for acceleration

ax=ay=gTm2        (IV)

Write the equation of motion for distance covered

Δx=12ax(Δt)2        (V)

Here Δt is the time

Substitute (IV) in (V) and rewrite in terms of (Δt)

Δt=2ΔxgTm2        (VI)

Conclusion

Substitute 8kg for m2, 9.8m/s2 for g, 88N for T and 2m for Δx in (VI)

Δt=2(2m)9.8m/s288N8kg=2s

The time is 2s_

(c)

To determine

Force to push the crate.

(c)

Expert Solution
Check Mark

Answer to Problem 175P

The force is 70N_.

Explanation of Solution

Let P be the force with which you push on the crate.

Then,

Fx=TPfkm1gsinθ=0P=fk+m1gsinθT        (VII)

Write the force on the box

Fy=Tm2g=0T=m2g        (VIII)

Substitute for T and fk in (VII)

P=μkm1gcosθ+m1gsinθm2g=g(m1(μkcosθ+sinθ)m2)        (IX)

Conclusion

Substitute 15kg for m1, 8kg for m2, 9.8m/s2 for g, 60° for θ and 0.30 for μk in (IX)

P=9.8m/s2(15kg(0.30cos60°+sin60°)8kg)=70N

The force is 70N_.

(d)

To determine

Smallest mass that you could substitute to keep the crate from sliding down the incline.

(d)

Expert Solution
Check Mark

Answer to Problem 175P

The mass is 10kg_.

Explanation of Solution

The net force on each object would be zero.

Then net force for the crate,

Fx=T+μsm1gcosθm1gsinθ=0Fy=Nm1gcosθ=0        (X)

Here μs is the coefficient of static friction.

Force of the box,

Fx=0Fy=Tm2g=0        (XI)

Then,

m2=Tg        (XII)

Tension is,

T=m1gsinθμsm1gcosθ        (XIII)

Substitute for T from (XIII) in (XII)

m2=m1gsinθμsm1gcosθg=m1sinθμsm1cosθ

Conclusion

Substitute 15kg for m1, 60° for θ and 0.40 for μs in (IX)

    m2=15kgsin60°(0.40)(15kg)cos60°=10kg

The mass is 10kg_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
This time we have a crate of mass 48.1 kg on an inclined surface, with a coefficient of kinetic friction 0.192. Instead of pushing on the crate, you let it slide down due to gravity. What must the angle of the incline be, in order for the crate to slide with an acceleration of 6.38 m/s^2?     30.4 degrees     65.8 degrees     40.5 degrees     50.6 degrees
A person pushes a block of mass M = 6.0 kg with a constant speed of 5.0 m/s straight up a flat surface inclined at 30.0 above the horizontal. The coefficient of kinetic friction between the block and the surface is 0.40. What is the net force acting on the block?     51 N     31 N     21 N     0 N
Assuming the coefficient of static friction is 0.76.  You push downward on a box at an angle 25° below the horizontal with a force of 750 N. If the box is on a flat horizontal surface, what is the mass of the heaviest box you will be able to move?   54 kg 57 kg 41 kg None of the above choices are correct. 51 kg 45 kg 48 kg

Chapter 4 Solutions

Physics

Ch. 4.5 - CHECKPOINT 4.5 If you climb Mt. McKinley, what...Ch. 4.5 - Practice Problem 4.7 Figs on the Moon What would...Ch. 4.6 - CHECKPOINT 4.6 Your laptop is resting on the...Ch. 4.6 - Practice Problem 4.8 Chest at Rest Suppose the...Ch. 4.6 - Practice Problem 4.9 Passing a Truck A car is...Ch. 4.6 - Practice Problem 4.10 Smoothing the Infield...Ch. 4.7 - Practice Problem 4.11 Tightrope Practice Jorge...Ch. 4.7 - Practice Problem 4.12 System of Ropes, Pulleys,...Ch. 4.8 - Practice Problem 4.13 The Continuing Story … How...Ch. 4.8 - Practice Problem 4.14 Coupling Force Between First...Ch. 4.8 - Practice Problem 4.15 Another Check Using the...Ch. 4.8 - Practice Problem 4.16 Hauling the Crate with a...Ch. 4.8 - Practice Problem 4.17 Engine Thrust What is the...Ch. 4.8 - Prob. 4.18PPCh. 4.8 - Prob. 4.8CPCh. 4.10 - Practice Problem 4.19 Elevator Descending What is...Ch. 4.10 - Prob. 4.10CPCh. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Prob. 9CQCh. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - 15. A heavy ball hangs from a string attached to a...Ch. 4 - 16. An SUV collides with a Mini Cooper...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - 24. Pulleys and inclined planes are examples of...Ch. 4 - Prob. 25CQCh. 4 - Prob. 26CQCh. 4 - Prob. 27CQCh. 4 - Prob. 28CQCh. 4 - Prob. 29CQCh. 4 - Prob. 30CQCh. 4 - Prob. 31CQCh. 4 - Prob. 1MCQCh. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 6MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 8MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 14MCQCh. 4 - Prob. 15MCQCh. 4 - Prob. 16MCQCh. 4 - Prob. 17MCQCh. 4 - Prob. 18MCQCh. 4 - Prob. 19MCQCh. 4 - Prob. 20MCQCh. 4 - Prob. 21MCQCh. 4 - Prob. 22MCQCh. 4 - Prob. 23MCQCh. 4 - Prob. 24MCQCh. 4 - Prob. 25MCQCh. 4 - Prob. 26MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - 16. A truck driving on a level highway is acted on...Ch. 4 - 17. A tennis ball (mass 57.0 g) moves toward the...Ch. 4 - 18. A red-tailed hawk that weighs 8 N is gliding...Ch. 4 - 19. An 80 N crate of apples sits at rest on the...Ch. 4 - 20. Forces of magnitudes 2000 N and 3000 N act on...Ch. 4 - 21. A person stands on the ball of one foot. The...Ch. 4 - Prob. 21PCh. 4 - 22. A sailboat, tied to a mooring with a line,...Ch. 4 - 23. A hummingbird is hovering motionless beside a...Ch. 4 - 24. You are pulling a suitcase through the airport...Ch. 4 - Prob. 30PCh. 4 - 26. A man is lazily floating on an air mattress in...Ch. 4 - 27. What is the acceleration of an automobile of...Ch. 4 - 29. A large wooden crate is pushed along a...Ch. 4 - 28. A bag of potatoes with weight 39.2 N is...Ch. 4 - 30. A hanging plant is suspended by a cord from a...Ch. 4 - 31. A bike is hanging from a hook in a garage....Ch. 4 - 32. A woman who weighs 600 N sits on a chair with...Ch. 4 - 33. A fisherman is holding a fishing rod with a...Ch. 4 - Prob. 35PCh. 4 - Problems 35–37. A skydiver, who weighs 650 N, is...Ch. 4 - 36. (a) Identify the forces acting on the...Ch. 4 - 37. Consider the skydiver and parachute to be a...Ch. 4 - 38. Margie, who weighs 543 N, is standing on a...Ch. 4 - 39. (a) Calculate your weight in newtons. (b) What...Ch. 4 - 40. A young South African girl has a mass of 40.0...Ch. 4 - 41. A man weighs 0.80 kN on Earth. What is his...Ch. 4 - 42. The peak force on a runner’s foot during a...Ch. 4 - 43. In a binary star system, two stars orbit their...Ch. 4 - 44. An astronaut stands at a position on the Moon...Ch. 4 - 45. Find the ratio of the Earth’s gravitational...Ch. 4 - 46. How far above the surface of the Earth does an...Ch. 4 - 47. Find and compare the weight of a 65 kg man on...Ch. 4 - 48. Find the altitudes above the Earth’s surface...Ch. 4 - 49. During a balloon ascension, wearing an oxygen...Ch. 4 - 50. At what altitude above the Earth’s surface...Ch. 4 - 51. (a) What is the magnitude of the gravitational...Ch. 4 - 52. What is the approximate magnitude of the...Ch. 4 - 53. In free fall, we assume the acceleration to be...Ch. 4 - 54. A solar sailplane is going from Earth to Mars....Ch. 4 - Problems 55–57. Assume the elevator is supported...Ch. 4 - 56. While an elevator of mass 2530 kg moves...Ch. 4 - 57. While an elevator of mass 832 kg moves...Ch. 4 - 58. The vertical component of the acceleration of...Ch. 4 - Prob. 58PCh. 4 - 59. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - 60. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - Prob. 63PCh. 4 - 62. A binary star consists of two stars of masses...Ch. 4 - Prob. 65PCh. 4 - 65. A crate of artichokes is on a ramp that is...Ch. 4 - Prob. 66PCh. 4 - Prob. 68PCh. 4 - 67. An 85 kg skier is sliding down a ski slope at...Ch. 4 - 68. A book that weighs 10 N is at rest in six...Ch. 4 - 69. Strategy While the crate is remaining at rest,...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - 73. (a) In Example 4.10, if the movers stop...Ch. 4 - 74. A 3.0 kg block is at rest on a horizontal...Ch. 4 - 75. A horse is trotting along pulling a sleigh...Ch. 4 - 76. Before hanging new William Morris wallpaper in...Ch. 4 - 78. A box sits on a horizontal wooden ramp. The...Ch. 4 - 79. In a playground, two slides have different...Ch. 4 - 81. A towline is attached between a car and a...Ch. 4 - 82. In Example 4.14, find the tension in the...Ch. 4 - 83. A 200.0 N sign is suspended from a horizontal...Ch. 4 - 84. Strategy Use Newton’s first law of motion. The...Ch. 4 - 85. A pulley is attached to the ceiling. Spring...Ch. 4 - 86. Spring scale A is attached to the floor and a...Ch. 4 - 87. Two springs are connected in series so that...Ch. 4 - 88. A pulley is hung from the ceiling by a rope. A...Ch. 4 - 89. A 2.0 kg ball tied to a string fixed to the...Ch. 4 - Prob. 90PCh. 4 - 91. A 45 N lithograph is supported by two wires....Ch. 4 - 92. A crow perches on a clothesline midway between...Ch. 4 - 93. The drawing shows a wire attached to two back...Ch. 4 - Prob. 94PCh. 4 - 95. Two blocks, masses m1 and m2, are connected by...Ch. 4 - 96. The coefficient of static friction between a...Ch. 4 - 97. A 2.0 kg toy locomotive is pulling a 1.0 kg...Ch. 4 - 98. An engine pulls a train of 20 freight cars,...Ch. 4 - Prob. 99PCh. 4 - A horizontal rope is attached from a truck to a...Ch. 4 - 101. An accelerometer—a device to measure...Ch. 4 - 102. A box full of books rests on a wooden floor....Ch. 4 - 103. A helicopter is lifting two crates...Ch. 4 - 104. A person stands on a bathroom scale in an...Ch. 4 - 105. Oliver has a mass of 76.2 kg. He is riding in...Ch. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - 110. Yolanda, whose mass is 64.2 kg, is riding in...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 32CQCh. 4 - Prob. 33CQCh. 4 - Prob. 34CQCh. 4 - Prob. 35CQCh. 4 - Prob. 36CQCh. 4 - Prob. 114PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 113PCh. 4 - Prob. 3CQCh. 4 - Prob. 115PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - 134. The tallest spot on Earth is Mt. Everest,...Ch. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - Prob. 136PCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - Prob. 143PCh. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - Prob. 148PCh. 4 - 155. You want to lift a heavy box with a mass of...Ch. 4 - 156. A crate of oranges weighing 180 N rests on a...Ch. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - 159. A helicopter of mass M is lowering a truck of...Ch. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - 164. A person is doing leg lifts with 3.00 kg...Ch. 4 - Prob. 159PCh. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 164PCh. 4 - Prob. 163PCh. 4 - Prob. 170PCh. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 171PCh. 4 - Prob. 167PCh. 4 - Prob. 172PCh. 4 - Prob. 173PCh. 4 - You are designing a high-speed elevator for a new...Ch. 4 - Prob. 175PCh. 4 - Prob. 176PCh. 4 - Prob. 168PCh. 4 - Prob. 169P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY