Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Students have asked these similar questions
In a multilayered rectangular wall, the thermal resistance of the first layer is 0.005 °C/W, the resistance of the second layer is 0.2° C/W, and for the third layer it is 0.1 ° C/W. The overall temperature gradient in the multilayered wall from one side to another is 70° C. a. Determine the heat flux through the wall. b. If the thermal resistance of the second layer is doubled to 0.4° C/W, what will be its influence in % on the heat flux, assuming the temperature gradient remains the same?
The passenger compartment of a minivan traveling at 60 mph can be modeled as a 3.2-ft-high, 6-ft-wide, and 11-ftlong rectangular box whose walls have an insulating value of R-3 (i.e., a wall thickness-to-thermal conductivity ratio of 3 h?ft2?°F/Btu). The interior of a minivan is maintained at an average temperature of 70°F during a trip at night while the outside air temperature is 90°F. The average heat transfer coefficient on the interior surfaces of the van is 1.2 Btu/h?ft2?°F. The air flow over the exterior surfaces can be assumed to be turbulent because of the intense vibrations involved, and the heat transfer coefficient on the front and back surfaces can be taken to be equal to that on the top surface. Disregarding any heat gain or loss by radiation, determine the rate of heat transfer from the ambient air to the van. Assume the air flow to be entirely turbulent because of the intense vibrations involved. Use a film temperature of 80°F for evaluations of air properties at 1 atm.
A person puts a few apples into the freezer at 15°C cool them quickly for guestswho are about to arrive. Initially, the apples are at a uniform temperature of 20°C,and the heat transfer coefficient on the surfaces is 8 W/m2·K. Treating the apples as9-cm-diameter spheres and taking their properties to be 840 kg/m3, Cp 3.81 kJ/kg·K, k = 0.418 W/m·K, and α =10-7 m2/s, determine the center and surface temperatures of the apples in 1 h. Also, determine the amount of heat transfer from each apple. Solve this problem using analytical one-term approximation method (notthe Heisler charts). Answer: Center: 11.2 ℃, Surface: 2.7 ℃, heat transfer: 17.2 kJ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license