Physics For Scientists And Engineers
Physics For Scientists And Engineers
6th Edition
ISBN: 9781429201247
Author: Paul A. Tipler, Gene Mosca
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 52P

(a)

To determine

The unknown tension and masses.

(a)

Expert Solution
Check Mark

Answer to Problem 52P

The value of the tension T1 is 60N , T2 is 52N and the value of the mass is m is 5.3kg .

Explanation of Solution

Given:

The given diagram is shown in Figure 1

  Physics For Scientists And Engineers, Chapter 4, Problem 52P , additional homework tip  1

Figure 1

Formula used:

For the given diagram, the expression for the horizontal forces is given by,

  T1cos60°=T3T1=T3cos60°

The equation for the forces resolved in the vertical direction is given by,

  T2=T1sin60°

The expression for the mass of the block is given by,

  m=T2g

Calculation:

The tension T1 is calculated as,

  T1=T3cos60°=60Ncos60°=60N

The expression for the value of the tension T2 in the rope is calculated as,

  T2=T1sin60°=(60N)sin60°=52N

The mass of the block is calculated as,

  m=T2g=52N9.8m/ s 2=5.3kg

Conclusion:

Therefore, the value of the tension T1 is 60N , T2 is 52N and the value of the mass is m is 5.3kg .

(b)

To determine

The unknown tension and masses.

(b)

Expert Solution
Check Mark

Answer to Problem 52P

The value of the tension T1 is 42.6N , T2 is 46.2N and the value of the mass is m is 4.7kg .

Explanation of Solution

Formula used:

The free body diagram for the tension in the rope for figure (b) is shown in Figure 2

  Physics For Scientists And Engineers, Chapter 4, Problem 52P , additional homework tip  2

Figure 2

For the given diagram, the expression for the horizontal forces is given by,

  T1sin60°=T3sin60°T1=T3tan60°

The equation for the forces resolved in the vertical direction is given by,

  T2=T3sin60°T1cos60°

The expression for the mass of the block is given by,

  m=T2g

Calculation:

The tension T1 is calculated as,

  T1=T3tan60°=80Ntan60°=42.6N

The expression for the value of the tension T2 in the rope is calculated as,

  T2=T3sin60°T1cos60°=(80N)sin60°(42.6N)cos60°=46.2N

The mass of the block is calculated as,

  m=T2g=46.2N9.8m/ s 2=4.7kg

Conclusion:

Therefore, the value of the tension T1 is 42.6N , T2 is 46.2N and the value of the mass is m is 4.7kg .

(c)

To determine

The unknown tension and masses.

(c)

Expert Solution
Check Mark

Answer to Problem 52P

The value of the tension T1 is 34N , T2 is 58.8N and the value of the mass is m is 3.47kg .

Explanation of Solution

Formula used:

The free body diagram for the tension in the rope for figure (c) is shown in Figure 3

  Physics For Scientists And Engineers, Chapter 4, Problem 52P , additional homework tip  3

Figure 3

For the given diagram, the expression for the horizontal forces is given by,

  T2=m1g

The equation for the forces resolved in the vertical direction is given by,

  T2=T1sin60°+T3sin60°

The expression for the mass of the block is given by,

  m=T1g

The expression for the forces resolved in the horizontal direction is given by,

  T1cos60°=T3cos60°T1=T3

Calculation:

The tension T2 is calculated as,

  T2=m1g=(6kg)(9.8m/ s 2)=58.8N

The expression for the value of the tension T1 in the rope is calculated as,

  T2=T1sin60°+T3sin60°58.8N=T1sin60°+T1sinsin60°T1=58.8N2sin60°T1=34N

The mass of the block is calculated as,

  m=T1g=34N9.8m/ s 2=3.47kg

Conclusion:

Therefore, the value of the tension T1 is 34N , T2 is 58.8N and the value of the mass is m is 3.47kg .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A space rocket of mass 1500kg travelled from the Earth to the Moon, whose centres are separated by 3.8 x 108 m. Calculate the magnitude and direction of the resultant force of gravity due to the Earth and Moon, on the space rocket, when it is midway between their centres.
In an elevator problem, how do we know to use only the 2nd Newton law of motion for scale or elevator at rest?
As a system's mass increases, its acceleration decreases and approaches 0. Based on Newton's second law, will a system with extremely large mass still have a non zero acceleration?

Chapter 4 Solutions

Physics For Scientists And Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY