FLUID MECHANICS:FUND.+APPL.(LL)>CUSTOM<
FLUID MECHANICS:FUND.+APPL.(LL)>CUSTOM<
3rd Edition
ISBN: 9781260244342
Author: CENGEL
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 55P

Converging duct flow is modeled by the steady, two-dimensional velocity field of Prob. 4-16. As vertical line segment AB moves downstream it shrinks from length η to length η Δ η as sketched in Fig. P4-57. Generate an analytical expression for the change in length of the line segment. Δ η Note that the change in length. Δ η , is negative. (Hint: Use the result of Prob. 4-54.)

Expert Solution & Answer
Check Mark
To determine

The expression for the change in the length of the line segment.

Answer to Problem 55P

The expression for the change in the length of the line segment is (yByA)(ebt1).

Explanation of Solution

Given information:

Initially fluid particle is located at xA along x axis, and at yA along y direction.

Write the expression for the two-dimensional velocity field in the vector form.

  V=(U0+bx)ibyj   ...... (I)

Here, the horizontal speed is U0, the constant is b, and the distance in x direction is x and the distance in y direction is y.

Write the expression for the velocity component along x direction.

  u=U0+bx  ...... (II)

Here, the variable is x in x direction.

Write the expression for the velocity component along x direction.

  v=by   ...... (III)

Here, the variable is y in y direction.

Write the expression for the velocity in y direction in differential form.

  dydt=v   ...... (IV)

Write the expression for the initial length.

  η=yByA  ...... (V)

Here, the initial location of A is yA and the initial location of B is yB.

Write the expression for the final length.

  η+Δη=yByA   ...... (VI)

Here, the final location of A is yA, the final location of B is yB the change in length is Δη.

Write the expression for the change in lengths.

  Δη=(η+Δη)η   ...... (VII)

Calculation:

Substitute by for v in Equation (IV).

  dydt=bydyby=dt   ...... (VIII)

Integrate the Equation (VIII).

   dy by=dtt=lnyb+lnC1t=ln(y 1 b)+lnC1t=ln( C 1 y 1 b )  ...... (IX)

Substitute yA for y and 0 for t in Equation (IX).

  0=ln( C 1 ( y A ) 1 b )ln(1)=ln( C 1 ( y A ) 1 b )C1( y A ) 1 b=1C1=(yA)1b

Substitute (yA)1b for C1 in Equation (IX).

  t=ln( ( y A ) 1 b y 1 b )t=1bln( y Ay)bt=ln( y Ay)ebt=yAy

  y=yAebty=yAebtyA=yAebtyB=yBebt

Substitute yByA for η+Δη and yByA for η in Equation (VII).

  Δη=(yByA)(yByA)   ...... (X)

Substitute 1b[(U0+byB)ebtU0] for yB and 1b[(U0+byA)ebtU0] for yA in Equation (X).

  Δη=(1b[( U 0 +b y B )e btU0]1b[( U 0 +b y A )e btU0])(yByA)=(1b[( U 0 +b y B )e btU0( U 0 +b y A )e bt+U0])(yByA)=(yByA)ebt(yByA)=(yByA)(ebt1)

Conclusion:

The expression for the change in the length of the line segment is (yByA)(ebt1).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A incompressible, steady, velocity field is given by the following components in the x-y plane:  u = 0.205 + 0.97x + 0.851y ; v = v0 + 0.5953x - 0.97y How would I calculated the acceleration field (ax and ay), and the acceleration at the point, v0= -1.050 ? Any help would be greatly appreciated :)
Consider the steady, incompressible, two-dimensional velocity field               V-›= (u, ? ) = (4.35 + 0.656x) i-›+ (−1.22 − 0.656y) j-› . Generate a velocity vector plot in the upper-right quadrant from x = 0 to 5 and y = 0 to 6.
3.3 Starting with a small fluid element of volume dx dy dz, derive the continuity equation (Eq. 3.4) in rectangular cartesian coordinates.

Chapter 4 Solutions

FLUID MECHANICS:FUND.+APPL.(LL)>CUSTOM<

Ch. 4 - A tiny neutrally buoyant electronic pressure probe...Ch. 4 - Define a steady flow field in the Eulerian...Ch. 4 - List at least three oiler names for the material...Ch. 4 - A weather balloon is hunched into the atmosphere...Ch. 4 - A Pilot-stalk probe can often be seen protruding...Ch. 4 - Is the Eulerian method of fluid flow analysis more...Ch. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Prob. 19PCh. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - The velocity field for a flow is given by...Ch. 4 - Consider steady flow of air through the diffuser...Ch. 4 - For the velocity field of Prob. 422, calculate the...Ch. 4 - A steady, incompressible, two-dimensional (in the...Ch. 4 - For the velocity field of Prob. 4-6, calculate the...Ch. 4 - Prob. 26CPCh. 4 - Prob. 27CPCh. 4 - What is the definition of a streamline? What do...Ch. 4 - Prob. 29CPCh. 4 - Consider the visualization of flow over a 15°...Ch. 4 - Consider the visualization of ground vortex flow...Ch. 4 - Consider the visualization of flow over a sphere...Ch. 4 - What is the definition of a timeline? How can...Ch. 4 - Consider a cross-sectional slice through an array...Ch. 4 - Prob. 35PCh. 4 - The velocity field of a flow is described by...Ch. 4 - Consider the following steady, incompressible,...Ch. 4 - Consider the steady, incompressible,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - The velocity held for a line vartex in the r...Ch. 4 - The velocity field for a line some in the r plane...Ch. 4 - A very small circular cylinder of radius Rtis...Ch. 4 - Consider the same two concentric cylinders of...Ch. 4 - Conversing duct flow is modeled by the steady,...Ch. 4 - Prob. 48CPCh. 4 - Name and briefly describe the four fundamental...Ch. 4 - Converging duct flow (Fig. P4—16) is modeled by...Ch. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Using the results of Prob. 4—57 and the...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - For the velocity field of Prob. 4—60, what...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Prob. 65PCh. 4 - Consider the steady, incompressible,...Ch. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - A cylindrical lank of water rotates in solid-body...Ch. 4 - Prob. 74PCh. 4 - A cylindrical tank of radius rrim= 0.354 m rotates...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Consider the following steady, three-dimensional...Ch. 4 - Prob. 79PCh. 4 - For the Couette flow of Fig. P4—79, calculate the...Ch. 4 - Combine your results from Prob. 4—80 to form the...Ch. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Prob. 88CPCh. 4 - Briefly explain the purpose of the Reynolds...Ch. 4 - True or false: For each statement, choose whether...Ch. 4 - Consider the integral ddtt2tx2. Solve it two ways:...Ch. 4 - Prob. 92PCh. 4 - Consider the general form of the Reynolds...Ch. 4 - Consider the general form of the Reynolds...Ch. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Consider fully developed two-dimensional...Ch. 4 - For the two-dimensional Poiseuille flow of Prob....Ch. 4 - Combine your results from Prob. 4—100 to form the...Ch. 4 - Prob. 103PCh. 4 - Prob. 107PCh. 4 - The velocity field for an incompressible flow is...Ch. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 114PCh. 4 - In a steady, two-dimensional flow field in the...Ch. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 119PCh. 4 - Based on your results of Prob. 4—116, discuss the...Ch. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Water is flowing in a 3-cm-diameter garden hose at...Ch. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - The actual path traveled by an individual fluid...Ch. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - An array of arrows indicating the magnitude and...Ch. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - Prob. 136PCh. 4 - A steady, two-dimensional velocity field is given...Ch. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license