Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 41, Problem 29P

(a)

To determine

The wave function ψ(x) for a quantum particle in state n=4 in a finite potential well.

(b)

To determine

The probability density function |ψ(x)|2 for a quantum particle in state n=4 in a finite potential well.

Blurred answer
Students have asked these similar questions
An electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on two quantum numbers nx and ny and are given by                                             E = h2/8me (nx2/Lx2 + ny2/Ly2)Using this information, we wish to find the wavelength of a photon needed to excite the electron from the ground state to the second excited state, assuming Lx = Ly = L. (a) Using the assumption on the lengths, write an expression for the allowed energies of the electron in terms of the quantumnumbers nx and ny. (b) What values of nx and ny correspond to the ground state? (c) Find the energy of the ground state. (d) What are the possible values of nx and ny for the first excited state, that is, the next-highest state in terms of energy? (e) What are the possible values of nx and ny for thesecond excited state?…
An experimental nanoelectronic device confines electrons to a layer only 0.92 nm thick, which acts like a one-dimensional infinite square well. Find the energies of the ground state and the first two excited states of these electrons. Constants: h = 6.626-10-34 [J-s], m= 9.109-10-³¹ [kg] and ħ=h/2π.
We are going to use Heisenberg's uncertainty principle to estimate the ground- state energy of hydrogen. In our model, the electron is confined in a one- dimensional well with a length about the size of hydrogen, so that Ax = 0.0529 nm. Estimate Ap, and then assume that the ground-state energy is roughly Ap2/2me. (Give your answer in Joules or electron-volts.)

Chapter 41 Solutions

Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning